Anlage 17.15.4.3

Beton- und Stahlaggressivität

Prüfung und Beurteilung von betonangreifenden Wässern nach DIN 4030 Teil 2

Bauvorhaben: Umbau Knoten Frankfurt/Main-Sportfeld

Objekt: EÜ Gutleuthof

1. Allgemeine Angaben

Prüfungs-Nr. Wessling: 10-128794-01 Reg.-Nr.:

Entnahmestelle: BK 133 Auftrags-N.: PF 3 0368 01
Entnahmetiefe: 5,70m Art des Wassers: Grundwasser

Entnahmedatum: -

Probeneingang: 02.12.2010 Probenehmer: UGG

Bemerkungen:

Geländeverhältnisse am Entnahmeort:

A-144-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				,							
2. Wasseranalyse		3. Grenzwerte zur Beurteilung nach DIN 4030 Teil 1 ^{*)}									
	F	Prüfergebnis		schwach	angreifend	stark angreifend		ngreifend	sehr stark angreifend		
Aussehen	1	klar, far	blos		-/			-			-
Geruch (unveränderte Probe)			ne derheit					-	-		
Geruch (angesäuerte Probe)	E	ohn Besond			-			-	-		
pH - Wert		7,5		6,5 k	ois 5,5	<	5,5	bis 4,5	< 4,5		4,5
KMnO₄ -Verbrauch	<	1,0	mg/l		-			-	-		-
Härte		31	mg/l		-			-	-		-
Hydrocarbonathärte		12	ng/l		-			-	-		-
Nichtcarbonathärte		k.A						-			-
Magnesium (Mg ²⁺)		13	mg/l	300 bis	1000 mg/l	>100	0 b.	3000 mg/l		>	3000 mg/l
Ammonium (NH ₄ ⁺)		0,5	mg/l	15 bis	30 mg/l	> 3	0 b.	60 mg/l		>	60 mg/l
Sulfat (SO ₄ ²⁻)		110	mg/l	200 bis	600 mg/l	> 60	0 b.	3000 mg/l		>	3000 mg/l
Chlorid (Cl ⁻)		56	mg/l		-			-			-
CO ₂ (kalklösend)		23,0	mg/l	15 bis	40 mg/l	> 4	0 b.	100 mg/l		>	100 mg/l
Sulfid (S ²⁻)	<	0,20	mg/l		-			-			-
								nn - nicht	nachw	eisba	ar

^{*)} Für die Beurteilung ist der höchste Angriffsgrad maßgebend, auch wenn er nur von einem der Werte erreicht wird. Liegen zwei oder mehr Werte im obsten Viertel eines Bereiches (bei pH im unteren Viertel), so erhöht sich der Angriffsgrad um eine Stufe (ausgenommen Meerwasser und Niederschlagswasser).

4. Beurteilung

Das Wasser ist schwach betonangreifend.

ausgeführt durch: Wessling geprüft: Meineck

Betonaggressivität von Wässern

Angaben zur Beurteilung von Wässern auf die Korrosionswahrscheinlichkeit metallischer Werkstoffe nach DIN 50 929

Bauvorhaben: Umbau Knoten Frankfurt/Main-Sportfeld					
Objekt:	EÜ Gutleuthof				
Entnahmestelle:	B 133	Probe-Nr.:	Entnahmetiefe: 5,70 m		
Prüfungs-Nr. :	Wessling 10-128794-0	1			
RegNr. :					
Auftrags-Nr. :	PF 3 0368 01				
Bemerkungen :	Fingang am 02 12 2010	0			

Nr.	Merkmal und Dimension	Einheit / Prüf-	Bewertungs	ziffer für
		ergebnisse	unlegierte Eisen	verzinkten Stahl
1	Wasserart		N ₁	M ₁
	fließende Gewässer	X	0	-2
	stehende Gewässer		-1	+1
	Küste von Binnenseen		-3	-3
	anaerob.Moor, Meeresküste		-5	-5
2	Lage des Objektes		N ₂	M_2
	Unterwasserbereich	х	0	0
	Wasser/Luft-Bereich		1	-6
	Spritzwasserbereich		0,3	-2
3	$c (Cl^{-}) + 2 c (SO_4^{2-})$	mol/m³	N ₃	<i>M</i> ₃
	< 1		0	0
	> 1 bis 5	3,9	-2	0
	> 5 bis 25		-4	-1
	> 25 bis 100		-6	-2
	> 100 bis 300		-7	-3
	> 300	1/ 0	-8	-4
4	Säurekapazität bis pH 4,3 (Alkalität _{K S4,3})	mol/m³	N ₄	M ₄
	< 1		1	-1
	1 bis 2		2	+1
	> 2 bis 4	4.4	3 4	+1
	> 4 bis 6	4,4	5	0 -1
F	> 6	mol/m ³		
5	c (Ca ²⁺)	moi/m°	N ₅	M ₅
	< 0,5		-1	0
	0,5 bis 2		0	+2
	> 2 bis 8	2,7	+1	+3
-	> 8		+2	+4
٥	pH - Wert		N ₆	<i>M</i> ₆
	< 5,5		-3	-6
	5,5 bis 6,5		-2	-4
	> 6,5 bis 7,0	7.5	-1	-1 .1
	> 7,0 bis 7,5 > 7,5	7,5	0 +1	+1 +1
7	Objekt/Wasser-Potential U _H	V	N ₇	т і
	(zur Feststellung der Fremdkathoden)			
	> -0,2 bis -0,1	x	-2	
	> -0,1 bis 0,0		-5	
	> -0,0		-8	
Prob	ennal me und analytische Bestimmungen nach DIN 50 930 Teil 1 .			

geprüft: Meineck Bearbeiter: Wessling

Angaben zur Beurteilung von Wässern auf die Korrosionswahrscheinlichkeit metallischer Werkstoffe nach DIN 50/929

Bauvorhaben: Umbau Knoten Frankfurt/Main-Sportfeld Objekt: **EÜ** Gutleuthof Entnahmestelle: B 133 Probe-Nr.: Entnahmetiefe: 5,70m Wessling 10-128794-01 Prüfungs-Nr.: Reg.-Nr. PF 3 0368 01 Auftrags-Nr. :

Entsprechend Tab. 6 aus DIN 50929/ T.3 ergeben sich nachfolgende Bewertungsziffern:

- 1. Wasserart:
- 2. Lage des Objektes:
- 3. $c(Cl^{-}) + 2c(SO_4^{2-})$
- 4. Säurekapazität
- 5. Calcium
- 6. pH Wert
- Objekt/wasser-Potential U_H

	Bewertungsziffer für							
	unlegie	rte Eisen	sen verzinkten St					
	^ 1	0*	<i>M</i> ₁	-2*				
	N ₂	0*	M ₂	0*				
	N ₃	-2	<i>M</i> ₃	0				
4	N 4	4	M_4	0				
	N_5	1	<i>M</i> ₅	3				
	N ₆	0	<i>M</i> ₆	1				
	<i>IN</i> 7	-2						

^{*} basiert auf örtlicher Einschätzung

Abschätzung der Korrosionswahrscheinlichkeit (DIN 50929/T.3,Tab. 7):

4	I I and a second as a second			
٦.	liniagiarta lind	niadrialagianta	- ICANWARK C#	ntta
1.	Unlegierte und	illeulluleulei le	FI3CIIM CI V3	Ulic

1.1 Freie Korrosion im Unterwasserbereich

$$W_0 = N_1 + N_3 + N_4 + N_5 + N_6 + N_3/N_4$$
 $W_0 = 2.5$

1.2 Korrosion an der Wasser/Luft-Grenz

$$W_1 = W_0 - N_1 + N_2 \times N_3$$

$$W_1 = 2.5 \longrightarrow$$

Mulden- u. Lochkorrosion	Flächen- korrosion
sehr gering	sehr gering
sehr gering	sehr gering

Abschätzung der mittleren Korrosionsgeschwindigkeit (DIN 50929/T.3,Tab. 8):

1.3 Freie Korrosion im Unterwasserbereich

 $W_0 = 2.5$

1.4 Korrosion an der Wasser/Luft-Grenze

 $W_1 = 2.5$

Abtragungsrate	max. Eindring- tiefe w _{Lmax}
w (100 a) in mm/ a	(30 a) in mm/a
0,01	0,05
0,01	0,05

Maßnahmen für den Korrosionsschutz (DIN 50 929, Teil 3, Punkt 8.1):

Allgemeir ist Korrosionsschutz durch Beschichtungen zu bevorzugen. Dabei sind folgende Normen

zu berücksichtigen Stahlbau: DIN 55 928, Teil 5

Rohre: DIN 30 670, DIN 30671, DIN 30 672, DIN 30 673, DIN 30 674, Teil 1 und 2.

Frankfurt, 11.02.2011

geprüft: Tang

Angaben zur Beurteilung von Wässern auf die Korrosionswahrscheinlichkeit metallischer Werkstoffe nach DIN 50 929

Bauvorhaben:	Umbau Knoten Fra	nkfurt/Main-Sportfeld	
Objekt:	EÜ Gutleuthof		
Entnahmestelle:	B 133	Probe-Nr. :	Entnahmetiefe: 5,70m
Prüfungs-Nr. :	Wessling 10-12879	4-01	
RegNr. :	0		
Auftrags-Nr. :	PF 3 0368 01		/

Entsprechend Tab. 6 aus DIN 50929/ T.3 ergeben sich nachfolgende Bevertungsziffern:

- 1. Wasserart:
- 2. Lage des Objektes:
- 3. $c(Cl^{-}) + 2 c(SO_4^{2})$
- 4. Säurekapazität
- 5. Calcium
- 6. pH Wert
- 7. Ubjekt/wasser-Potential UH

	Bewertungsziffer für								
	unlegie	rte Eisen	verzinkten Stahl						
	^ 1	0*	<i>M</i> ₁	-2*					
	N ₂	0*	M ₂	0*					
	N ₃	-2	<i>M</i> ₃	0					
	N 4	4	M_4	0					
	N ₅	1	M_5	3					
	N ₆	0	<i>M</i> ₆	1					
	<i>IN</i> 7	-2							

^{*} basiert auf örtlicher Einschätzung

Abschätzung der Korrosionswahrscheimlichkeit (DIN 50929/T.3,Tab. 5):

2.	Feuerverz	inkte	Stähle

2.1 Ausbildung der Deckschicht im Unterwasserbereich

$$W_D = M_1 + M_3 + M_4 + M_5 + M_6$$

$$W_{\rm D} = 2.0 \longrightarrow$$

2.2 Ausbildung der Deckschicht an der Wasser/Luft-Grenze

$$W_L = W_D + M_2$$

$$W_L = 2.0 \longrightarrow$$

Güte der	
Deckschichten	
sehr gut	
sehr gut	

Abschätzung der mittleren Korrosionsgeschwindigkeit:

- entfällt -

Maßnahmen für den Korrosionsschutz (DIN 50 929, Teil 3, Punkt 8.3):

Im wesentlichen gelten die Angaben für unverzinkte Stähle. Feuerverzinkte Stähle sollten nur verwendet werden, wenn die Schutzwirkung mindestens befriedigend (s. vorstehende Tabelle) ist.

Frankfurt, 11.02.2011

geprüft: Tang

Prüfung und Beurteilung von betonangreifenden Wässern nach DIN 4030 Tejf 2

Bauvorhaben: Umbau Knoten Frankfurt/Main-Sportfeld

Objekt: EÜ Ladestraße

1. Allgemeine Angaben

Prüfungs-Nr. Wessling: 10-120344-02 Reg.-Nr.:

Entnahmestelle: BK 137 Auftrags-Nr. PF 3 0368 01
Entnahmetiefe: k.A. Art des Wassers: Grundwasser

Entnahmedatum: -

Probeneingang: 11.11.2010 Probeneingang: UGG

Bemerkungen:

Geländeverhältnisse am Entnahmeort:

2. Wasseranalyse				3. Grenz	werte z	r Beu	rteilung nach	DIN 40	30 Teil 1 ^{*)}	
	Prü	Prüfergebnis		schwach	angreifend	stark angreifend		sehr stark angreifend		
Aussehen	far	blos			- /		-	,	-	
Geruch (unveränderte Probe)		Miner	ralöl				-		-	
Geruch (angesäuerte Probe)	Ве	ohne sonde			-		-		-	
pH - Wert		8,0		6,5 b	ois 5,5	<	5,5 bis 4,5		< 4,5	
KMnO ₄ -Verbrauch	<	1,0	mg/l		-		-		-	
Härte	3	878	mg/l		-		-		-	
Hydrocarbonathärte		110	mg/l		-		-		-	
Nichtcarbonathärte		k.A.			-		-		-	
Magnesium (Mg ²⁺)		31	mg/l	300 bis	1000 mg/l	>1000	b. 3000 mg/l	>	3000 mg/l	
Ammonium (NH ₄ ⁺)		0,2	mg/l	15 bis	30 mg/l	> 30	0 b. 60 mg/l	>	60 mg/l	
Sulfat (SO ₄ 2-)	/	57	mg/l	200 bis	600 mg/l	> 600	0 b. 3000 mg/l	>	3000 mg/l	
Chlorid (Cl ⁻)		57	mg/l		-		-		-	
CO ₂ (kalklösend)	<	2,0	mg/l	15 bis	40 mg/l	> 40	0 b. 100 mg/l	>	100 mg/l	
Sulfid (S ²⁻)	< (0,10	mg/l		-		-		-	
							nn - nich	t nachwe	isbar	

^{*)} Für die Beurteilung ist der nöchste Angriffsgrad maßgebend, auch wenn er nur von einem der Werte erreicht wird. Liegen zwei oder mehr Werte im oberer Viertel eines Bereiches (bei pH im unteren Viertel), so erhöht sich der Angriffsgrad um eine Stufe (ausgenommen Meerwasser und Niederschlagswasser).

4. Beurteilung

Das Wasser gilt als nicht betonangreifend.

ausgeführt durch: Wessling geprüft: Meineck

Betonaggressivität von Wässern

Angaben zur Beurteilung von Wässern auf die Korrosionswahrscheinlichkeit metallischer Werkstoffe nach DIN 50 929

Bauvorhaben:	Umbau Knoten Fra	nkfurt/Main-Sportfeld	
Objekt:	EÜ Ladestraße		
Entnahmestelle:	BK 137	Probe-Nr.:	Entnahmetiefe:
Prüfungs-Nr. :	Wessling 10-12034	4-02	
RégNr. :			
Auftrags-Nr. :	PF 3 0368 01		
Bemerkungen:	Eingang am 11.11.2	2010	

Nr.	Merkmal und Dimension	Einheit / Prüf-	Bewertungs			
		ergebnisse	unlegierte Eisen	verzinkten Stahl		
1	Wasserart		N ₁	M_1		
	fließende Gewässer	х	0	-2		
	stehende Gewässer		-1	+1		
	Küste von Binnenseen		-3	-3		
	anaerob.Moor, Meeresküste		-5	-5		
2	Lage des Objektes		N ₂	M ₂		
	Unterwasserbereich	x	0	0		
	Wasser/Luft-Bereich		1	-6		
	Spritzwasserbereich		0,3	-2		
3	$c (Cl^{-}) + 2 c (SO_4^{2-})$	nol/m³	N ₃	M_3		
	< 1		0	0		
	> 1 bis 5	2,8	-2	0		
	> 5 bis 25		-4	-1		
	> 25 bis 100		-6	-2		
	> 100 bis 300		-7	-3		
	> 300		-8	-4		
4	Säurekapazität bis pH 4,3 (Alkalität _{K S4})	mol/m³	N ₄	M_4		
	< 1		1	-1		
	1 bis 2		2	+1		
	> 2 bis 4	3,9	3	+1		
	> 4 bis 6		4	0		
	> 6		5	-1		
5	c (Ca ²⁺)	mol/m³	N ₅	M ₅		
	< 0,5		-1	0		
	0,5 bis 2		0	+2		
	> 2 bis / 8		+1	+3		
	> 8	14,2	+2	+4		
6	pH - Wert		N ₆	<i>M</i> ₆		
	< 5,5		-3	-6		
	5,5 bis 6,5		-2	-4		
	> 6,5 bis 7,0		-1	-1		
	> 7,0 bis 7,5		0	+1		
	> 7,5	8,0	+1	+1		
7	Objekt/Wasser-Potential U _H	V	N ₇			
	(zur Feststellung der Fremdkathoden)					
	> -0,2 bis -0,1	x	-2			
	> -0,1 bis 0,0		-5			
	> -0,0		-8			
Prob	benng ime und analytische Bestimmungen nach DIN 50 930 Teil 1.					

Bearbeiter: Wessling

geprüft: Meineck

Angaben zur Beurteilung von Wässern auf die Korrosionswahrscheinlichkeit metallischer Werkstoffe nach DIN 50,929

Bauvorhaben: Umbau Knoten Frankfurt/Main-Sportfeld

Objekt: EÜ Ladestraße

Entnahmestelle: BK 137 Probe-Nr.: Entnahmet efe: 0,00 m

Prüfungs-Nr.: Wessling 10-120344-02

Auftrags-Nr. : PF 3 0368 01

Entsprechend Tab. 6 aus DIN 50929/ T.3 ergeben sich nachfolgende Bewertungsziffern:

4	11/
	Wasserart:

- 2. Lage des Objektes:
- 3. $c(Cl^{-}) + 2 c(SO_4^{2-})$
- 4. Säurekapazität
- 5. Calcium
- 6. pH Wert
- 7. UDJEKT/Wasser-Potential UH

	Be vertungsziffer für						
	unlegie	rte Eisen	verzinkten Stahl				
	N_1	0*	<i>M</i> ₁	-2*			
	N ₂	0*	M ₂	0*			
	N ₃	-2	<i>M</i> ₃	0			
4	N ₄	3	M_4	1			
1	N ₅	2	M_5	4			
	N ₆ 1		<i>M</i> ₆	1			
	IN ₇	-2					

^{*} basiert auf örtlicher Einschätzung

Muldon

Abschätzung der Korrosionswahrscheinlichkeit (DIN 50929/T.3,Tab. 7):

1. Unlegierte und niedriglegierte Eisenwerkstoffe

1.1 Freie Korrosion im Unterwasserbereich

$$W_0 = N_1 + N_3 + N_4 + N_5 + N_6 + N_3/N_4$$
 $W_0 = 3.3 \rightarrow$

1.2 Korrosion an der Wasser/Luft-Grenze

$$W_1 = W_0 - N_1 + N_2 \times N_3$$

$$W_1 = 3.3 \longrightarrow$$

Mulden- u.	Flachen-		
Lochkorrosion	korrosion		
sehr gering	sehr gering		
sehr gering	sehr gering		

Elächen

Abschätzung der mittleren Korrosionsgeschwindigkeit (DIN 50929/T.3,Tab. 8):

1.3 Freie Korrosion im Unterwasserbereich

 $W_0 = 3.3$

1.4 Korrosion an der Wasser/Luft-Grenze

 $W_1 = 3.3$

Abtragungsrate	max. Eindring- tiefe w _{Lmax}		
w (100 a) in mm/ a	(30 a) in mm/a		
0,01	0,05		
0,01	0,05		

Maßnahmen für den Korrosionsschutz (DIN 50 929, Teil 3, Punkt 8.1):

Stahlbau: DIN 55 928, Teil 5

Allgemein ist Korrosionsschutz durch Beschichtungen zu bevorzugen. Dabei sind folgende Normen

Rohre: DIN 30 670, DIN 30671, DIN 30 672, DIN 30 673, DIN 30 674, Teil 1 und 2.

Frankfurt, 18.02.2011

zu berücksichtigen

geprüft: Ehrhardt

Angaben zur Beurteilung von Wässern auf die Korrosionswahrscheinlichkeit metallischer Werkstoffe nach DIN 50,929

Bauvorhaben: Umbau Knoten Frankfurt/Main-Sportfeld
Objekt: EÜ Ladestraße
Entnahmestelle: BK 137 Probe-Nr.: Entnahmetefe: 0,00 m

Prüfungs-Nr.: Wessling 10-120344-02
Auftrags-Nr.: PF 3 0368 01

Entsprechend Tab. 6 aus DIN 50929/ T.3 ergeben sich nachfolgende Bewertungsziffern:

- 1. Wasserart:
- 2. Lage des Objektes:
- 3. $c(Cl^{-}) + 2c(SO_4^{2-})$
- 4. Säurekapazität
- 5. Calcium
- 6. pH Wert
- 7. Objekt/wasser-Potential U_H

Be vertungsziffer für							
unlegie	rte Eisen	verzinkten Stahl					
N ₁	0*	<i>M</i> ₁	-2*				
N ₂ 0*		M_2	0*				
		<i>M</i> ₃	0				
N ₄	3	M_4	1				
N_5	2	M_5	4				
N ₆	1	<i>M</i> ₆	1				
<i>IN</i> 7	-2						

^{*} basiert auf örtlicher Einschätzung

Abschätzung der Korrosionswahrscheinlighkeit (DIN 50929/T.3, Tab. 5):

Feuerverzinkte Stähle

2.1 Ausbildung der Deckschicht im Unterwasserbereich

$$W_{\rm D} = M_1 + M_3 + M_4 + M_5 + M_6$$
 $W_{\rm D} = 4$

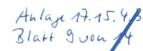
2.2 Ausbildung der Deckschicht an der Wasser/Luft-Grenze

$$W_{L} = W_{D} + M_{2}$$

$$W_L = 4.0 \rightarrow$$

Güte der	
Deckschichten	
sehr gut	
sehr gut	

Abschätzung der mittleren Korrosionsgeschwindigkeit:


- entfällt -

Maßnahmen für den Korrosionsschutz (DIN 50 929, Teil 3, Punkt 8.3):

Im wesentlichen gelten die Angaben für unverzinkte Stähle. Feuerverzinkte Stähle sollten nur verwendet werden, wenn die Schutzwirkung mindestens befriedigend (s. vorstehende Tabelle) ist.

Frankfurt, 18.02.2011

geprüft: Ehrhardt

WESSLING

WESSLING Laboratorien GmbH Labor Rhein-Main Rudolf-Diesel-Strafie 23 · 64331 Weiterstadt Tel. +49 [0] 6151 3636-0 · Fax +49 [9, 6151 3636-20 labor.rhein-main@wessling.de

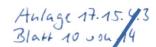
WESSLING Laboratorien GmbH, Rudolf-Diesel-Straße 23, 64331 Weiterstadt

DB International GmbH - Baugrund Bereich West / Südwest Büro Frankfurt am Main Herr Sielisch Oscar-Sommer-Straße 15 60596 Frankfurt Ansprechpartner: Durchwahl: E-Mail: Dr. Dennis Braks (06151) 3 636-25 Dennis.Braks @wessling.de

Auftr.-Nr. PF 30368 01

BV: Umbau Knoten Frankfurt/Main-Sportfeld

Teilobjekt: EÜ


Prüfbericht Nr. UDA11-00452-1	Auftrag Nr.	Auftrag Nr. U A-04037-10		Datum 26.01.2011
Probe Nr.		10-120344-01	10-120344-02	
Eingangsdatum		11.11.2010	11.11.2010	
Bezeichnung		Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137	
Probenart		Wasser, allgemein	Wasser, allgemein	
Probenahme durch		Auftraggeber	Auftraggeber	
Untersuchungsbeginn		11.11.2010	11.11.2010	
Untersuchungsende		18.11.2010	18.11.2010	

Physikalische Untersuchung

Probe Nr.		10-120344-01	10-120344-02
Bezeichnung		Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137
Farbe	W/E	braun	farblos
Geruch	W/E	ohne	nach Mineralöl
pH-Wert	W/E	8	8

Kationen, Anionen und Nichtmetalle

Probe Nr.	10-120344-01	10-120344-02		
Bezeichnung			Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137
Ammonium (NH4)	mg/l	W/E	0,31	0,19
Härtehyd ogencarbonat	ЯН	W/E	11	11
Gesamthärte	ян	W/E	30,4	87,8
Kohlensäure (CO2), aggressive	mg/l	W/E	4	<2
Permanganat-Index	mg/l	W/E	212	<1
sulfid (S), gelöst	mg/l	W/E	<0,1	<0,1
Chlorid (CI)	mg/l	W/E	52	57
Sulfat (SO4)	mg/l	W/E	110	57

WESSLING Laboratorien GmbH Labor Rhein-Main Rudolf-Diesel-Straße 23 · 64331 Walterstadt Tel. +49 [0] 6151 3636-0 · Fax +49 [3] 6151 3636-20 labor.rhein-main@wessling.de

Prüfbericht Nr.	UDA11-00452-1	Au	ftrag Nr.	UDA-04037-10)	Datum	26.01.2011
Elemente							
Probe Nr.				10-120344-01	10-120344-02		
Bezeichnung				Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137		
Calcium (Ca)		mg/l	W/E	150	570		
Magnesium (M	lg)	ma/l	W/E	40	31	1	

WESSLING Laboratorien GmbH Labor Rhein-Main Rudolf-Diesel-Straße 23 · 64331 Weiterstadt Tel. +49 (0) 6151 3636-0 · Fax +49 (0) 151 3636-20 labor.rhein-main@wessling.de

Prüfbericht Nr. UDA11-00452-1	Auft	rag Nr.	UDA-04037-10		Datum 26
Probe Nr.			10-120344-01	10-120344-02	
Eingangsdatum			11.11.2010	11.11.2010	
Bezeichnung			Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137	
Probenart			Wasser, allgemein	Wasser, allgemein	
Probenahme durch			Auftraggeber	Auftraggeber	
Untersuchungsbeginn			11.11.2010	11.11.2310	
Untersuchungsende			18.11.2010	18.1 .2010	
Drobo Ne			10-120344-01	10-120344-02	
Probe Nr.			Kreuz.bauwerk	EÜ Ladestraße	
Bezeichnung			BK 54	BK 137	
Chlorid (CI)	mol/m³	W/E	1,47	1,61	
Sulfat (SO4)	mol/m³	W/E	1/15	0,593	
Calcium (Ca)	mol/m³	W/E	3,74	14,2	
Physikalische Untersuchung				-	
Probe Nr.			10-120344-01	10-120344-02	
Bezeichnung			Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137	
pH-Wert		V/E	8	8	
Redoxpotential vs. NHE	mV	W/E	178	161	
Kationen, Anionen und Nichtmetalle					
Probe Nr.			10-120344-01	10-120344-02	
Bezeichnung	/		Kreuz.bauwerk	EÜ Ladestraße	
		\A18=	BK 54	BK 137	
Chlorid (CI)	mg/l	W/E	110	57	
Sulfat (SO4)	mg/l	VV/E	110	57	
Sonstiges					
Probe Nr.			10-120344-01	10-120344-02	
Bezeichnung			Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137	
Säurekapazität, pH 4,7	mmol/l	W/E	4,05	3,85	
Elemente					
Probe Nr.			10-120344-01	10-120344-02	
Bezeichnung			Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137	

Calcium

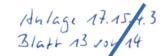
ca)

W/E

mg/l

150

570


WESSLING Laboratorien GmbH Labor Rhein-Main Rudolf-Diesel-Straße 23 · 64331 Weiterstadt Tel. +49 (0) 6151 3636-0 · Fax +49 (0) 6151 3636-20 labor.rhein-main@wessling.de

Prüfbericht Nr.	UDA11-00452-1	Auftrag Nr.	UDA-04037-10	Datum 26.01.2011
Abkürzungen i	und Methoden			
Färbung von Wass	er/Eluat	EN ISO 788	37 (C1) ^A	
Geruch/Geschmac	k von Wasser/Eluat	DEV B1/2		
pH-Wert in Wasser	r/Eluat	DIN 38404	C5	
Permanganat-Index	x in Wasser/Eluat	EN ISO 846	67	
Kohlensäure aggre	ssive in Wasser/Eluat	DIN 38404	C10	
Ammonium		DIN 38406	E5-1	
Gelöste Anionen (D	019/D20) in Wasser/Eluat	EN ISO 103	304 D19/D20 ^A	
Gesamthärte in Wa	asser/Eluat	DIN 38409	Н6	
Härtehydrogencarb	oonat in Wasser/Eluat	DIN 38405	D8	
Gelöste Anionen (D	019/D20) in Wasser/Eluat	EN ISO 103	304-1 ^A	
Sulfid gelöst in Wa	asser/Eluat	DIN 38405	D26 ^A	
Metalle/Elemente in	n Wasser/Eluat (ICP-OES/ICP-MS)	ISO 11885	/ ISO 17294-2	
Säure- und Baseka	apazität in Wasser/Eluat	DIN 38409	H7	
Chlorid (CI)		EN ISO 103	304-1 ^A	
Sulfat (SO4)		EN ISO 10	304 D19/D20 ^A	
Calcium (Ca) aus	HF-HNO3-HCI-Druckaufschluß	EN ISO 11	885	
Redoxpotenzial		DIN 38404	C6	
W/E		Wasser/Elu	uat	

Disses Dokument wurde elektronisch erstellt und ist auch ohne Unterschrift gültig.

Dr. Dennis Braks Geschäftsbereichsleiter

WESSLING

WESSLING Laboratorien GmbH Labor Darmstadt Spreestraße 1 · 64295 Darmstadt Tel. +49 [0] 6151 3636-0 · Fax + 9 [0] 6151 3636-20 labor.darmstadt@wessling_re

WESSLING Laboratorien GmbH, Spreestraße 1, 64295 Darmstadt

DB International GmbH - Baugrund Bereich West / Südwest Büro Frankfurt am Main Herr Sielisch Oscar-Sommer-Straße 15 60596 Frankfurt Ansprechpurtne Durchwani: E-Mail

Dr. Dennis Braks (06151) 3 636-25 Dennis.Braks @wessling.de

Datum 07.12.2010

Auftr.-Nr. PF 30368 01

BV: Umbau Knoten Frankfurt/Main-Sportfeld Teilobjekt: EÜ Gutleuthof

Auftrag Nr. UDA-04261-10
10-128794-01
02.12.2010
GW - Entnahme BK 133 Tiefe 5,70 m
Grundwasser
Auftraggeber
02.12.2010
07.12.2010

Probe Nr.		10-128794-01	
Bezeichnung		F	GW - Entnahme BK 133 Tiefe 5,70 m
Chlorid (CI)	moVm³	W/E	1,58
Sulfat (SC4)	moVm³	W/E	1,15
Calcium (Ca)	mol/m³	W/E	2,74

Physikalische Untersuchung

Probe Nr.			10-128794-01	
Sezeichnung			GW - Entnahme BK 133 Tiefe 5,70 m	
pH-Wert		W/E	7,5	
Redoxpotential vs. NHE	mV	W/E	171	

Seite 1 von 2

WESSLING Laboratorien GmbH Labor Darmstadt Spreestraße 1 · 64295 Darmstad Tel. +49 [0] 6151 3636-0 · Fax +4/ [0] 6151 3636-20 labor.darmstadt@wessling.ge

Prüfbericht Nr.	UDA10-11132-1	Aut	ftrag Nr.	UDA-04261-10	Datum	07.12.2010
Kationen, Anior	nen und Nichtmetalle					
Probe Nr.				10-128794-01	1 /	
Bezeichnung				GW - Entnahme BK 133 Tiefe 5,70 m		
Chlorid (CI)		mg/l	W/E	56		
Sulfat (SO4)		mg/l	W/E	110		
Sonstiges						
Probe Nr.				10-128794-01	7	
Bezeichnung	•			GW - Entnahme BK 133 Tiefe 5,70 m		
Säurekapazität	, pH 4,3	mmol/l	W/E	4, 2		
Elemente					•	
Probe Nr.				15-128794-01		
Bezeichnung				GV - Entnahme SK 133 Tiefe 5,70 m		
Calcium (Ca)		mg/l	W/L	110		

Abkürzungen und Methoden

pH-Wert in Wasser/Eluat

Säure- und Basekapazität in Wasser/Eluat Gelöste Anionen (D19/D20) in Wasser/Eluat

Chlorid (CI)

Gelöste Anionen (D19/D20) in Wasser/Fluat

Sulfat (SO4)

Metalle/Elemente in Wasser/Eluat (CP-OES/ICP-MS)

Calcium (Ca) aus HF-HNO3-HO-Druckaufschluß

Redoxpotenzial

W/E

DIN 38404 C5A

DIN 38409 H7A

EN ISO 10304-1A

EN ISO 10304-1A

EN ISO 10304 D19/D20A

EN ISO 10304 D19/D20^A ISO 11885 / ISO 17294-2^A

EN ISO 11885A

DIN 38404 C6

Wasser/Eluat

Dr. Dennis Braks Geschäftsbereichsleiter

Seite 2 von 2

