

Anlage 17.9a (geändert)

DB Engineering & Consulting GmbH Urriwell, Geotechnik & Geodasie

Büro Frankfurt am Main Oskar-Sommer-Straße 15 60596 Frankfurt am Main Tel. 069 6319-176 Fax 069 6319-118

> Zerbfiziert nach DIN EN ISO 9001 2000 DOS fleg-Nr 005051 OM

Geotechnischer Bericht

Bauvorhaben:

Ausbau des Knotens Frankfurt(M)-Sportfeld, 2. Ausbaustufe

Teilobjekt:

Neubau Eingleisiger Überbau Adolf-Miersch-Straße

Leistungsphase:

Entwurfsplanung Genehmigungsplanung

Auftraggeber:

DB ProjektBau GmbH Netz AG

Regionalbereich Mitte

BV MI-P (4-8_T) I.NG-MI-F(1)

Hahnstraße 52 49

60528 Frankfurt (Main)

Auftragsnummer:

PF 3 0368 01 BG 00217 P

Bearbeiter:

Dipl.-Ing. Ch. Sielisch

Dieser geotechnische Bericht umfasst 28 Seiten und 7 Anlagen und darf auszugsweise nicht veröffentlicht werden.

Frankfurt, 01.03.2011 05.08.2016

Dipl.-Ing. Ch. Sielisch

Dipl.-Geol. U. Tang

Anlage 17.9a Seite 2 von 28

Inhalts	verzeichnis	Seite
1	Einleitung	4
1.1	Unterlagen	4
1.2	Vorgang / Aufgabenstellung	5
1.3	Aufschlussarbeiten und Laboruntersuchungen	5
2	Darstellung und Bewertung der geotechnischen Untersuchungsergebnisse	7
2.1	Beschreibung der örtlichen Verhältnisse	7
2.2	Geologische Situation	7
2.3	Baugrundverhältnisse - Schichtenaufbau und Kennwerte	8
2.4	Hydrologische Verhältnisse	12
2.5	Baugrundmodell	13
2.6	Bodenrechenwerte	14
2.7	Beton- und Stahlaggressivität des Grundwassers	16
2.8	Erdbebeneinwirkung	17
2.9	Rammfähigkeit des Untergrundes	17
3	Gründungstechnische Schlussfolgerungen / Empfehlungen	18
3.1	Allgemeines	18
3.2	Flachgründung	18
3.3	Bohrpfahlgründung	20
3.4	Pfahlwiderstände quer zur Pfahlachse	22
3.5	Baugrubensicherung und Wasserhaltung	23
3.6	Entwässerung / Versickerungsfähigkeit	24
3.7	Einfluss auf angrenzende Bebauung	26
3.8	Ausbildung der Hinterfüllung	26
3.9	Wiederverwendbarkeit der Aushubmassen	27
4	Zusammenfassung / Schlussbemerkungen	28

DB	Ausbau Knoten Frankfurt EŨ Adolf-Miersch-Straße Geotechnischer Bericht	Anlage 17.9a Seite 3 von 28
Anlagenverzeio	hnis	
Anlage 17.9.1	Abkürzungsverzeichnis	1 Blatt
Anlage 17.9.2	Lage- und Aufschlusspläne	1 Blatt
Anlage 17.9.3	Bohr-/Sondierprofile und Rammdiagramme	1 Blatt
Anlage 17.9.4	Bodenmechanische Laborergebnisse	
Anlage 17.9	.4.1 Körnungslinien	5 Blatt
Anlage 17.9	.4.2 Zustandsgrenzen	2 Blatt
Anlage 17.9	.4.3 Beton- und Stahlaggressivität des Grundwassers	8 Blatt
Anlage 17.9.5	Fundament-/Setzungsdiagramm	1 Blatt
Anlage 17.9.6	Kampfmittelfreimessung	6 Blatt
Anlage 17.9.7	Fotodokumentation	7 Blatt

1 Einleitung

1.1 Unterlagen

Zur Ausarbeitung dieses Geotechnischen Berichtes standen folgende Unterlagen zur Verfügung:

- /U 1/ Bestellung 0086/VEW/22669874 vom 10.08.2010 zum Vertrag 0016/RA8/92166128 vom 06.08.2010 auf Grundlage unseres Angebotes ID30616 vom 19.07.2010.
- /U 2/ Vorplanung Lagepläne LP21A, 22A, 23A, 04A und 05A, von DB ProjektBau GmbH, Stand: Juli 2004 / Okt. 2009 / Aug. 2010.
- /U 3/ Vorplanung "EÜ Adolf-Miersch-Straße", Bauwerksskizze: Draufsicht und Schnitte, Plan-Nr.: V-I-006, Maßstab 1:250, von DB ProjektBau GmbH, Stand: Aug. 2010
- /U 4/ Ergebnisse der Aufschlussarbeiten der Fa. Umweltgeotechnik GmbH, Okt. 2010 bis Jan. 2011.
- /U 5/ Laborergebnisse der DB International GmbH, Baugrund, Dez. 2010 bis Jan. 2011.
- /U 6/ Laborergebnisse der Fa. Wessling Laboratorien GmbH, Nov. 2010.
- /U 7/ Geologische Karte von Hessen, Blatt 5917 Kelsterbach, 3. neu bearbeitete Auflage, Maßstab 1:25.000; Herausgeber: Hessisches Landesamt für Bodenforschung, Wiesbaden 1980.
- /U 8/ Hydrologisches Kartenwerk, Hessische Rhein- und Mainebene, Grundwasserhöhengleichenplan vom Hessischen Landesamt für Umwelt und Geologie, Maßstab 1:50.000, Stand: 10/2009.
- /U 9/ Datenauszug zu Grundwassermessstellen vom Hessischen Landesamt für Umwelt und Geologie und der HESSENWASSER GMBH & Co. KG MONITORING UND GRUNDWASSERMESSSTELLEN, Stand: Sept. 2010.
- /U 10/ Ril 836 Erdbauwerke planen, bauen und instand halten, Fassung vom 01.10.2008.
- /U 11/ EA-Pfähle Empfehlungen des Arbeitskreises "Pfähle", Deutsche Gesellschaft für Geotechnik e.V., Verlag Ernst & Sohn, 2007.
- /U 12/ EAB Empfehlungen des Arbeitskreises "Baugruben", Deutsche Gesellschaft für Geotechnik e. V., 4. Auflage; Verlag Ernst & Sohn, 2006.
- /U 13/ Arbeitsblatt DWA-A 138 "Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser", Stand: 05/2005.
- /U 14/ Programm "GGU-FOOTING", Berechnungen von Fundamenten nach DIN 4017 und DIN 4019 bzw. DIN 1054, Version 6.25, 16.06.2010, Copyright + Verfasser: Prof. Dr.-Ing. Johann Buß.
- /U 15/ Programm "GGU-Axpile", Berechnung und graphische Darstellung von Bohr- und Rammpfählen nach DIN 4014 bzw. DIN 1054, Version 5.08, 16.10.2010, Copyright + Verfasser: Prof. Dr.-Ing. J. Buß.

Außerdem kommen die gegenwärtig gültigen DIN-Normen und Richtlinien für Erd- und Grundbau zur Anwendung.

1.2 Vorgang / Aufgabenstellung

Der Ausbau des Knotens Frankfurt(Main)-Sportfeld ist ein Teilprojekt der Gesamtmaßnahme Frankfurt RheinMain^{plus}. Der Knoten Frankfurt(Main)-Sportfeld soll in der 2. Ausbaustufe im Streckenabschnitt zwischen Frankfurt(Main)-Sportfeld und Frankfurt(Main)-Gutleuthof durch zwei zusätzliche Fernverkehrsgleise ausgebaut werden.

Geotechnischer Bericht

Die vorhandene Eisenbahnüberführung Adolf-Miersch-Straße wird dazu mit einem neuen eingleisigen Überbau, einschließlich der dazugehörigen Widerlager erweitert.

Die DB International Engineering & Consulting GmbH, Baugrund wurde auf der Grundlage der Bestellung /U 1/ mit der Erkundung, Darstellung und Bewertung der Baugrundverhältnisse im Untersuchungsbereich der Brückenerweiterung, mit Angabe bodenmechanischer Kennwerte für die Gründung der Brücke beauftragt.

Des Weiteren waren umweltanalytische Untersuchungen des im Untersuchungsbereiches erkundeten Bodens durchzuführen.

Nachfolgend werden die Untersuchungsergebnisse für den Brückenneubau dargestellt und bewertet. Die abfalltechnische Beurteilung erfolgt in einem separaten Bericht.

1.3 Aufschlussarbeiten und Laboruntersuchungen

Während des Streckenbegangs durch Mitarbeiter der DB International Engineering & Consulting GmbH vom 06.-08.10.2010 wurden durch die Fa. Geolog die Ansatzpunkte der Kernbohrungen und der Rammsondierungen nach Vorgabe des RP Darmstadt auf Kampfmittelverdacht hin untersucht und freigemessen. Das Freimessprotokoll der Radarmessungen ist in Anlage 17.9.6 beigefügt.

Die Aufschlussarbeiten im Bereich der Eisenbahnüberführung Adolf-Miersch-Straße wurden durch die Firma Umweltgeotechnik GmbH vom 02.10.2010 bis 10.12.2010 ausgeführt.

Zur Erkundung der Baugrundverhältnisse waren in Abstimmung mit dem Auftraggeber je Brückenwiderlager eine Kernbohrung (B) mit Tiefen bis 20 m und 2 Kleinbohrungen im Damm (BS, Ø 60 mm) bis max. 10 m unter Gelände geplant. Für die Ermittlung der Lagerungsverhältnisse des Baugrundes waren insgesamt 4 schwere Rammsondierung (DPH) mit Tiefen zwischen 10 und 20 m unter Gelände vorgesehen.

Die schweren Rammsondierungen im Dammbereich/Böschungsschulter konnten aufgrund unzureichender Platzverhältnisse nicht ausgeführt werden. Nach Rücksprache mit dem AG sind diese durch zwei leichte Rammsondierungen (DPL-5) ersetzt worden.

Für die Klärung der Kabel- und Leitungsfreiheit wurden vor Bohrbeginn Schürfe je Ansatzpunkt ausgeführt.

Die beiden Kernbohrungen S/B 96 und S/97 wurden nach Vorgabe des Amtes für Verkehrswesen im Schutz einer Verkehrssicherungsmaßnahme im Straßenbereich abgeteuft.

Die Aufschlüsse S/RKS/DPL-5 95, DPH 96, DPH 97 und S/RKS/DPL-5 98 mussten aufgrund eines zu hohen Eindringwiderstandes vorzeitig abgebrochen werden.

Die Aufschlüsse stellen sich geordnet nach steigendem Kilometer im Einzelnen wie folgt dar:

Tabelle 1: Übersicht der durchgeführten Aufschlüsse

km *)	Aufschluss	Lage *)	Ansatzhöhe	Endtiefe	Aufschlusstiefe
			[m NN]	[m NN]	[m]
7,141	S/RKS 95	3,0 m r.d.GA	103,15	97,05	6,10
7,141	DPL-5 95	3,0 m r.d.GA	103,15	97,85	5,30
7,155	S/B 96	13,0 m r.d.GA	97,26	73,26	24,00
7,155	DPH 96	13,0 m r.d.GA	97,26	83,76	13,50
7,187	S/B 97	12,0 m r.d.GA	97,00	73,00	24,00
7,187	DPH 97	12,0 m r.d.GA	97,00	86,20	10,80
7,198	S/RKS 98	2,5 m r.d.GA	102,51	96,56	5,95
7,198	DPL-5 98	2,5 m r.d.GA	102,51	96,41	6,10

S...Schurf, B...Kernbohrung, RKS...Kleinbohrung, DPH...schwere Rammsondierung, DPL-5...leichte Rammsondierung mit einer Sondierspitze A=5cm², l./r. d. GA...links/rechts der Gleisachse

Alle Ansatzpunkte wurden nach Lage und Höhe auf m NN des DB Referenznetzes und die Gleisachse des nächstgelegenen Streckengleises eingemessen. Die Entnahme von Bodenproben erfolgte je Ifd. Meter bzw. bei Schichtenwechsel. Die einzelnen, auf Bohrmeisterangaben beruhenden, handschriftlichen Schichtenverzeichnisse /U 4/ können bei Bedarf im Archiv der DB International GmbH, Baugrund eingesehen werden. Die Lage der Aufschlüsse ist aus Anlage 17.9.2 ersichtlich. Die Baugrundprofile sind bezogen auf m NN in der Anlage 17.9.3 dargestellt.

^{*)} bezogen auf Streckengleis 3624

Die entnommenen Bodenproben wurden durch den Bearbeiter nach DIN 4020 und DIN EN ISO 14688 spezifiziert. Zur genaueren Klassifizierung der Bodenarten in Bodengruppen nach DIN 18196 und Bodenklassen nach DIN 18300 sind ausgewählte Bodenproben bodenphysikalischen und chemischen Untersuchungen unterzogen worden. Aus der Kernbohrung S/B 96 ist eine Grundwasserprobe entnommen und bezüglich Beton- und Stahlaggressivität untersucht worden. Im Einzelnen wurden ausgeführt:

- 3x Nass-/Trockensiebung nach DIN 18123,
- 2x kombinierte Sieb-/Schlämmanalyse nach DIN 18123,
- 2x Bestimmung der Atterberg'schen Zustandsgrenzen nach DIN 18122 und
- 1x Bestimmung der Beton-/Stahlaggressivität (Wasser) nach DIN 4030 und DIN 50929.

Die Ergebnisse der Laboruntersuchungen können der Anlage 17.9.4 entnommen werden.

Weiterhin sind chemische Laboruntersuchungen an Bodenproben aus dem Bereich der Eisenbahnüberführung durchgeführt worden. Die umweltanalytischen Untersuchungen werden in einem separaten Bericht dargestellt und ausgewertet.

2 Darstellung und Bewertung der geotechnischen Untersuchungsergebnisse

2.1 Beschreibung der örtlichen Verhältnisse

Die vorhandene Eisenbahnüberführung bei Bahn-km 33,200 der Strecke 3520 (ca. Bahn-km 7,170 der Strecke 3624) überquert die Adolf-Miersch-Straße mit den Fahrspuren der Straße und den Gleisen der Straßenbahn. Die Bestandsgleise der Bahnstrecken liegen hier auf einem 6-7 m hohen Damm. Hier befindet sich auch der Bahnhof Frankfurt(Main)-Niederrad. Bahnrechts des Bestandsdammes liegen Kleingartenanlagen.

2.2 Geologische Situation

Das Untersuchungsgebiet liegt regionalgeologisch in der hessischen Senke zwischen dem Rheinischen Schiefergebirge, dem Vogelsberg im Norden, dem Odenwald im Süden und dem Mainzerbecken im Westen. Die mächtige Grabenfüllung des Oberrheingrabens endet im Norden etwa auf der Höhe von Rüsselsheim. Von Süden her bis dorthin sind über 2.000 m mächtige Tertiärschichten und über 100 m Quartär-Ablagerungen bekannt. Je weiter im Süden desto häufiger ist das Erkundungsgebiet geprägt durch eiszeitliche Flugsande mit Dünenbildung. Häufig sind diese Schichten kalkhaltig und besitzen Kalkkonkretionen. Die Mächtigkeit dieser quar-

tären Flugsande kann mehrere Meter betragen. Nach Norden nehmen die Mächtigkeiten dieser Schichten ab. In großen Teilen des Erkundungsgebietes stehen unter den Terrassensanden und -kiesen des Mains die Gesteine des Oligozäns aus dem Unteren Tertiär in Form des Rupeltones an. Darunter befinden sich die unteren Meeressande als Untergrenze des Tertiärs und Übergang zu den Gesteinen des Rotliegenden. Die Anstehenden Gesteine werden durch eine nach Nordwesten immer mächtiger werdende Deckschicht aus Gesteinen des Tertiärs überdeckt. Im nordwestlichen Bereich des Erkundungsgebietes können einzelne Kalksteinschichten (Hydrobienschichten) angetroffen werden. Im Bereich der Flussniederungen stehen an der Oberfläche quartäre Lockergesteine aus Flussedimenten, Niederterrassen von Main und kleineren Nebenflüssen an.

Der Rhein und der Main sowie ihre Nebenflüsse haben im Quartär am nördlichen Ende des Oberrheingrabens Sand und Kies abgelagert. Gelegentlich sind Schluff und Ton sowie Torf eingelagert. Dort wo diese Sedimente auf den ähnlichen Schichten des Pliozäns liegen, ist die Abgrenzung zu diesen schwierig.

Als typische pliozän-zeitliche Schichten der <u>Untermain-Ebene</u> gelten feinkörnige kalkfreie Sande (grau, weiß, gelblich) mit Einlagerungen von Tonlinsen, Braunkohlen und Kiesen. Die Gerölle dieser Kiese bestehen aus gebleichtem Buntsandstein, scharfkantigem Gangquarz, Quarzit und Hornstein. Der schwarze Kieselschiefer aus Frankenwald und Fichtelgebirge fehlt weitgehend.

Die Pleistozän-Schichten der <u>Untermain-Ebene</u> bestehen aus Sanden und Kiesen mit gelegentlichen schluffig-tonigen Einlagerungen. Die Gerölle der Kiese bestehen aus ungebleichtem Buntsandstein, Kalkstein, Hornstein, Quarz, Quarzit, Basalt und schwarzem Kieselschiefer aus Frankenwald und Fichtelgebirge. Hinzu kommen lokale Gerölle aus Spessart und Odenwald. Diese Sedimente sind in der Regel kalkhaltig, können aber sekundär entkalkt sein.

Im oberflächennahen Bereich der urban genutzten Bereiche ist infolge der Baumaßnahmen mit anthropogenen Auffüllungen zu rechnen. Durch den Einbau von zumeist lokal vorkommenden Böden ist dabei eine zweifelsfreie Unterscheidung zwischen aufgefülltem und gewachsenem Boden nicht immer möglich.

Ergeben sich im Verlauf der Bohrarbeiten auffällige Abweichung von der hier beschriebenen Geologie ist unverzüglich der Baugrundgutachter zu informieren.

2.3 Baugrundverhältnisse - Schichtenaufbau und Kennwerte

Gleisschotter

Mit den im Gleisbereich ausgeführten Erkundungen S/RKS 95, 98 wurde zunächst der Gleisschotter mit einer Gesamtschotterstärke von 0,15-0,2 m. Der Schotter wurde als verschmutzt eingeschätzt, mit einem vom Bohrmeister abgeschätzten Feinanteil zwischen 20-25 %. Gemäß Bohrmeisterangaben ist der angetroffene Schotter reinigungsfähig.

Eine Übersicht der erkundeten Schotterdicken und geschätzten prozentualen Feinanteile ist in Tabelle 2 zusammengestellt. Die Einschätzung der mechanischen Reinigungsfähigkeit gilt vorbehaltlich einer abfalltechnischen Einstufung des Schotters.

Tabelle 2: Erkundete Schotterverhältnisse

Aufschluss- Nr.	Lage zu GA	Gesamt- schotterhöhe [m]	Höhe Mischzone [m]	Feinanteil geschätzt [%]	mechanisch reinigungsfähig
95	3,0 m r.d.GA	0,15		20	ja
98	2,5 m r.d.GA	0,20		25	ja

Auffüllungen

Mit den ausgeführten Bohrungen am Dammfuss und den Kleinbohrungen in der Dammschulter sind beginnend ab Geländeoberkante bzw. unter dem Gleisschotter im Damm rollige Auffüllungen erkundet worden.

Die rolligen Auffüllungen stellen sich als enggestufte und schwach schluffige bis schluffige Fein- bis Grobsande, mit kiesigen und steinigen Bestandteilen dar. Am Bohransatz der RKS 98 wurde auch ein intermittierend gestufter sandiger Feinkies aufgeschlossen. Darüber hinaus waren die aufgefüllten Sande und Kiese mit Sandsteinstücken durchsetzt und in geringer Menge mit Schlacke, Kunststoffresten, Ziegel- und Wurzelresten. Nach DIN 18196 werden die Auffüllungen den Bodengruppen [SE, SU, GI, SU*] zugeordnet. Die Schichtdicke in den Bohrungen am Dammfuss schwankt zwischen 1,15-1,45 m. Die im Damm liegenden Kleinbohrungen enden in den Auffüllungen bei 7,01 m und 7,05 m unter SO.

Die Lagerungsdichte der rolligen Auffüllungen im Damm ist gemäß den Ergebnissen der leichten Rammsondierungen als locker bis dicht einzuschätzen. Die am Dammfuss ausgeführten schweren Rammsondierungen weisen auf eine lockere Lagerung hin. Die Rammsondierungen DPL-5 95 und DPL-5 98 mussten trotzt Umsetzens infolge eines unzureichenden Bohrfortschritts vorzeitig abgebrochen werden.

Anlage 17.9a Seite 10 von 28

An den Ansatzpunkten der im Straßenbereich ausgeführten Bohrungen B 96 und 97 ist eine Oberflächenbefestigung in Form eines grauen Pflasters mit einer Dicke von 5 cm aufgenommen worden.

Anstehender Boden

Unterhalb der Auffüllungen am Dammfuss folgen die quartären und tertiären Ablagerungen der Mainterrassen als anstehende Böden.

Die **quartären Sedimente** stellen sich als eng- und intermittierend gestufte kiesige Fein- und Mittelsande und sandige Fein- und Mittelkiese mit steinigen Anteilen der Bodengruppen SE, SI und GI dar. Lokal wurden auch Einlagen von schluffige Sanden der Bodengruppe SU* angetroffen. Die Lagerungsdichte der Sande und Kiese ist im Ergebnis der Rammsondierungen als locker bis dicht zu bewerten.

Unter den quartären Schichten folgen bis Endtiefe der Kernbohrungen S/B 96 und S/B 97 die **Sedimente des Tertiärs**. Das sind vorwiegend enggestufte und schwach schluffige bis schluffige Feinsande der Bodengruppen SE, SU und SU* nach DIN 18196. Die Lagerungsdichte ist im Ergebnis der Rammsondierungen und der Angaben des Bohrmeisters zum Bohrfortschritt als dicht einzuschätzen.

In diese rolligen Sedimente sind bindige Ablagerungen eingelagert. Das sind beige-graublaue leicht- bis mittelplastische, schwach sandige bis sandige Tone der Bodengruppen TL und TM. Die Konsistenz war zum Zeitpunkt der Erkundung und aus Handspezifizierung und Laborversuchen weich und steif bis steif/halbfest. Die Schichtdicke liegt in den Kernbohrungen bei 0,30 m und 2,8-2,9 m.

Den erkundeten Böden lassen sich die in folgender Tabelle 3 enthaltenen Kennwerte (Laboruntersuchung an repräsentativen Einzelproben sowie regionale Erfahrungswerte) zuordnen.

Tabelle 3: Bodenkennwerte und Zuordnungen

	A	Anstehender Boden			
	Auffüllung	Quartär	Tertiä	r	
Bezeichnung	Sand/Kies	Sand/Kies	Sand	Ton	
Bodengruppe nach DIN 18196	[SE, SU, GI, SU*]	SE, SI, GI, SU*	SE, SU, SU*	TL, TM	
Kornanteil d ≤ 0,063 mm [%]	3,3	1,64,6	31	47,583,4	
Kornanteil d > 2,0 mm [%]	33,2	42,259	0,05	0,1	
Ungleichförmigkeits- zahl U [-]	4,5	8,924,2	42,6	***	
natūri. Wassergehalt w _n [%]	***	3 111 2)		18,719,3	
korr. Wassergehalt w _k [%]				18,819,5	
Fließgrenze w _L [%]	***			32,944,1	
Ausrollgrenze w _P [%]			:===	11,913,6	
Plastizitātszahl I _P [%]		***	***	21,030,6	
Konsistenzzahl I _C [-] bezogen auf Gesamt- probe	***			0,680,81	
Konsistenz handspezifiziert).555		weich, steif steif/halbfest	
Lagerungsdichte	lockerdicht	lockerdicht	dicht		
Durchlässigkeitswert k _t [m/s]					
nach Beyer, USBR/Bialas	4,1*10 [SE]	7,66,5*10 ⁻⁴ (GI)	5,8*10 ⁻⁷ (SU*)		
Erfahrungswerte	10 ⁻³ 10 ⁻³ [SE, SU, GI] 10 ⁻⁵ 10 ⁻⁷ [SU*]	10 ⁻² 10 ⁻⁴ (SE, SI, GI) 10 ⁻⁵ 10 ⁻⁷ (SU*)	10 ⁻³ 10 ⁻³ (SE, SU) 10 ⁻⁵ 10 ⁻⁷ (SU*)	10 ⁻⁸ 10 ⁻¹⁰	
Durchlässigkeit nach DIN 18 130	stark bis schwach durchlässig	stark bis schwach durchlässig	stark bis schwach durchlāssig	sehr schwach durchlässig	
Bodenklasse nach DIN 18 300 *)	3 [SE, SU, GI] 4 [SU*]	3 (SE, SI, GI) 4 (SU*)	3 (SE, SU) 4 (SU*)	4	
Frostempfindlichkeit nach ZTVE - StB 09	F1 (SE, GI) F2 (SU) F3 (SU*)	F1 (SE, SI, GI) F3 (SU*)	F1 (SE) F2 (SU) F3 (SU*)	F3	

Tabellenwerte sind Mittelwerte bzw. Einzelwerte aus Laborversuchen.

^{*)} in Abhängigkeit vom Steinanteil auch höher.

2.4 Hydrologische Verhältnisse

Die Aufschlussarbeiten wurden von Oktober bis Dezember 2010 durchgeführt. Mit den ausgeführten Erkundungen sind die in Tabelle 4 aufgezeigten Grundwasserstände eingemessen worden.

Tabelle 4: Wasserstände

Auf- schluss	Wasseranschnitt [m u. GOK]	Wasseranschnitt nach Bohrende [m u. GOK]	Wasseranschnitt nach Bohrende [m NN]	Datum
B 96	4,10	4,10	93,16	02.10.2010
B 97	4,17	4,20	92,80	02.10.2010

Mit den Kernbohrungen S/B 96 und S/B 97 sind die Grundwasserstände nach Bohrende bei 93,16...92,80 m NN (4,1-4,2 m unter Gelände) eingemessen worden. Die erkundeten aufgefüllten und anstehenden Sande und Kiese sind überwiegend gut wasserdurchlässig. Auf den mit höheren Anteilen an Feinkorn durchsetzten Sanden (SU*) ist mit Stau- bzw. Schichtenwasser zu rechnen. Die mit den Kernbohrungen angetroffen Tone weisen eine geringe Durchlässigkeit auf.

Generell ist von einer guten Versickerungsfähigkeit im Untersuchungsbereich der Eisenbahnunterführung auszugehen.

Im Rahmen einer Recherche zu Grundwassermessstellen zum Projekt Umbau Knoten Frankfurt wurden beim Hessischen Landesamt für Umwelt und Geologie und bei der HESSENWASSER GMBH & Co. KG - MONITORING UND GRUNDWASSERMESSSTELLEN die Wasserstände zu Grundwassermessstellen entlang der Bahntrasse abgefragt (/U 8/ und /U 9/). Diese sind nachrichtlich in Tabelle 5 aufgelistet.

Tabelle 5: Wasserstände zu Grundwassermessstellen

Messstelle Rechtswert		Hochwert GOK				Wasserstand [m NN]			
			[m NN]	min	max	MW	min	max	MW
G03090	3473726,4	5548109,9	109,65	12,4	16,5	14,5	93,3	97,4	95,3
G04450	3474297,5	5548331,3	108,55	11,9	14,6	13,3	94,0	96,6	95,3
G04500	1202		95,37	2,7	4,8	3,8	90,6	92,7	91,6
G00740		1885	99,51	4,1	6,8	5,5	92,7	95,4	94,0
G05190	***		109,77	13,8	15,6	14,7	94,2	95,9	95,1

Anlage 17.9a Seite 13 von 28

Gemäß des aktuellsten Grundwasserhöhengleichenplan vom Hessischen Landesamt für Umwelt und Geologie /U 8/ fällt der Grundwasserhorizont von ca. 95 m NN auf 92,5 m NN Richtung Main hin ab.

Wir empfehlen, den Bemessungswasserstand in Abhängigkeit der festgestellten Ergebnisse aus den beiden Kernbohrungen S/B 96 und S/B 97 zuzüglich eines Sicherheitszuschlages von 1 m bei 94,16 m NN (ca. 3,0 m unter GOK) anzusetzen.

2.5 Baugrundmodell

Im Ergebnis der Baugrunderkundungen und der Laboruntersuchungen lässt sich für den Untersuchungsbereich ein Baugrundmodell entwickeln, welches für die Bewertung der Baugrundverhältnisse herangezogen werden kann. Zur besseren Übersicht wurde für den Ausbau des Knotens Frankfurt (M) – Sportfeld ein einheitliches Schichtenmodell entwickelt. Dabei wurden Böden mit annähernd gleichen bodenphysikalischen und bodenmechanischen Eigenschaften in Schichten zusammengefasst.

Schicht 1: Auffüllung, rollig, nicht bis schwach bindig Mächtigkeit: 1,15-5,95 m

- Fein-/Grobsand, enggestuft, schwach schluffig, schwach bis stark kiesig, steinig, Schlacke, Kunststoffreste, Sandsteinstücke, Ziegel- und Wurzelreste
- Feinkies, sandig
- lockere Lagerung (Schicht 1.2.1)
 mitteldichte Lagerung (Schicht 1.2.2, 1.4.2)
 dichte Lagerung (Schicht 1.2.3)

- Klassifikation It, DIN 18196 ⇒ [SE, SU, GI]

Auffüllung, rollig, gemischtkörnig Mächtigkeit: 0,5 m

- Mittelsand, kiesig, schluffig

- lockere Lagerung (Schicht 1.3.1)

- Klassifikation lt. DIN 18196 ⇒ [SU*]

Schicht 10: Terrassensande / -kiese

 Fein-/Mittelsand, enggestuft bis intermittierend gestuft, schluffig, schwach tonig, kiesig bis stark kiesig, schwach steinig, Sandsteinbruch Kies, intermittierend gestuft, sandig bis stark sandig

Mächtigkeit: 7,3-9,6 m

lockere Lagerung (Schicht 10.1.1, 10.1.4, 10.2.1)
 mitteldichte Lagerung (Schicht 10.1.2, 10.2.2)
 dichte Lagerung (Schicht 10.1.3)

- Klassifikation lt. DIN 18196 ⇒ SE, SI, GI SU*

Anlage 17.9a Seite 14 von 28

Schicht 15: Tertiäre Sande

Mächtigkeit: bis Endtiefe

- Feinsand, enggestuft, schluffig, schwach tonig
- dichte Lagerung (Schicht 15.1.3, 15.3.3)
- Klassifikation It. DIN 18196

⇒ SE

SU*

Schicht 16: Tertiäre Tone

Mächtigkeit: 0,3-2,9 m

- Ton, leicht- und mittelplastisch, schwach schluffig bis schluffig, sandig
- weiche Konsistenz (Schicht 16.1.2)
 steife und steif/halbfeste Konsistenz (Schicht 16.1.3)
- Klassifikation lt. DIN 18196

 \Rightarrow TL, TM

2.6 Bodenrechenwerte

Den erkundeten Baugrundschichten werden aus den Laborversuchen und Erfahrungen für erdstatische Berechnungen folgende charakteristische Berechnungskennwerte zugeordnet:

Tabelle 6a: Bodenrechenwerte

Bodenart	Auffüllung, rollig					
Bodengruppe nach DIN 18196	[SE, SU]	[SE, SU]	[SE]	[SU*]	[GI]	
Schicht-Nr.	1.2.1	1.2.2	1.2.3	1.3.1	1.4.2	
Konsistenz, Lagerungsdichte	locker	mitteldicht	dicht	locker	mitteldicht	
wirks. Reibungswinkel φ _k ' [Grad]	30,0	32,5	35,0	29,0	32,5	
wirks. Kohāsion c _k ' [kN/m²]	0,0	0,0	0,0	1,0	0,0	
Wichte des feuchten Bodens γ _k [kN/m³]	16,5	17,5	18,5	17,0	17,5	
Wichte des Bodens unter Auftrieb γ _k ' [kN/m³]	9,0	10,0	11,0	9,0	10,0	
Steifemodul E _{s,k} [MN/m²]	10,0	20,0	40,0	8,0	30,0	

Tabelle 6b: Bodenrechenwerte

Bodenart			Terrassenab	lagerungen		
Bodengruppe nach DIN 18196	SE, SI		SU*	GI		
Schicht-Nr.	10.1.1	10.1.2	10.1.3	10.1.4	10.2.1	10.2.2
Konsistenz, Lagerungsdichte	locker	mitteldicht	dicht	locker	locker	mitteldicht
wirks. Reibungswinkel φ_k ' [Grad]	30,0	32,5	35,0	27,5	32,5	35,0
wirks. Kohāsion c _k ' [kN/m²]	0,0	0,0	0,0	1,0	0,0	0,0
Wichte des feuchten Bodens y _k [kN/m³]	16,0	17,0	18,0	17,0	16,5	18,0
Wichte des Bodens unter Auftrieb γ _k ' [kN/m³]	8,5	9,5	10,5	9,0	9,0	10,5
Steifemodul E _{s,k} [MN/m²]	25 ab 5 m ¹⁾ : 40	45 ab 5 m ¹⁾ : 70	75 ab 5 m ¹⁾ : 120	15 ab 5 m ¹⁾ : 30	30 ab 5 m ¹⁾ : 45	50 ab 5 m ¹⁾ : 80

¹⁾ bezogen auf OK anstehender Boden (= UK Auffüllung)

Tabelle 6c: Bodenrechenwerte

Bodenart	Tertiäre	Sande	Tertiär	e Tone
Bodengruppe nach DIN 18196	SE	SU*	TL, TM	
Schicht-Nr.	15.1.3	15.3.3	16.1.2	16.1.3
Konsistenz, Lagerungsdichte	dicht	dicht	weich	steif, steif/halbfest
wirks. Reibungswinkel φ _k ' [Grad]	35,0	35,0	17,5	20,0
wirks. Kohāsion c _k ' [kN/m ²] ¹)	0,0	0,0	2,0	5,0
undrainierte Kohäsion c _u [kN/m²] ²)	0,0	0,0	0,0	15,0
Wichte des feuchten Bodens γ _k [kN/m³]	18,0	21,0	17,0	18,0
Wichte des Bodens unter Auftrieb γ _k ' [kN/m³]	10,0	11,0	7,0	8,0
Steifemodul E _{s,k} [MN/m²]	90 ab 5 m ³⁾ : 120 ab 10 m ³⁾ : 190	65 ab 10 m ³⁾ : 135	6	10

¹) Bei bindigen Böden im konsolidierten Zustand.

²) Der zugehörige innere Reibungswinkel beträgt φ_u = 0.

³) bezogen auf OK anstehender Boden (= UK Auffüllung).

2.7 Beton- und Stahlaggressivität des Grundwassers

Zur Bestimmung der Beton- und der Stahlaggressivität des Grundwassers ist aus der Bohrung S/B 96 eine Wasserprobe entnommen und auf beton- und stahlangreifende Inhaltsstoffe untersucht worden. Die Analysen erfolgten im Labor der DB International GmbH und im Labor Wessling GmbH. Die Ergebnisse dieser Untersuchungen sind in Anlage 17.9.4 beigefügt.

Betonaggressivität

Die untersuchte Wasserprobe ist nach DIN 4030 als **nicht betonangreifend** einzuschätzen (Anlage 17.9.4.3, Blatt 1), was der **Expositionsklasse X0** nach DIN EN 206-1 entspricht.

Stahlkorrosivität

Die Untersuchung auf Korrosionswahrscheinlichkeit unlegierter und niedriglegierter Eisenwerkstoffe ergab folgende Ergebnisse (Anlage 17.9.4.3, Blatt 02 - 04):

Tabelle 7: Korrosionswahrscheinlichkeit unlegierter und niedriglegierter Werkstoffe

Freie Korrosion	Mulden- und Lochkorrosion	Flächenkorrosion
im Unterwasserbereich	sehr gering	sehr gering
an der Wasser/Luft-Grenze	sehr gering	sehr gering

Die Abschätzung der mittleren Korrosionsgeschwindigkeit stellt sich nach DIN 50929 Teil 3, wie folgt dar:

Tabelle 8: Mittlere Korrosionsgeschwindigkeit

freie Korrosion	Abtragungsrate w(100a) [mm/a]	max. Eindringtiefe w _{Lmax} (30a) [mm/a]
Freie Korrosion im Unterwasserbereich	0,01	0,05
Freie Korrosion an der Was- ser/Luft-Grenze	0,01	0,05

2.8 Erdbebeneinwirkung

Der Untersuchungsbereich des Bauvorhabens "Ausbau des Knotens Frankfurt(M)-Sportfeld, 2. Ausbaustufe" wird nach DIN 4149:2005-04 wie folgt eingeordnet:

Tabelle 9: Einstufung gemäß DIN 4149

Erdbebenzone (Bild 2)	Erdbebenzone 0
10	S = Gebiete tiefer Beckenstrukturen mit mächtiger Sedimentfül-
Untergrundklasse (Bild 3)	lung
Baugrundklasse	C = dominierende Scherwellengeschwindigkeit ca. 150-350 m/s

2.9 Rammfähigkeit des Untergrundes

Eine Klassifizierung der Böden hinsichtlich ihrer Rammfähigkeit (z.B. nach DIN-Norm) gibt es nicht. Die nachfolgende Einschätzung basiert auf der Grundlage von Erfahrungen mit den erkundeten Bodenarten, Lagerungsdichten bzw. Konsistenzen und erfolgt in Anlehnung an Empfehlungen des Arbeitskreises Ufereinfassungen (EAU).

Tabelle 10: Rammfähigkeit

Schicht	Bodenart	Rammfähigkeit
1.2.1, 1.3.1	Auffüllung (Sand), locker	leicht bis mittelschwer
1.2.2, 1.4.2	Auffüllung (Sand/Kies), mitteldicht	mittelschwer
1.2.3	Auffüllung, (Sand), dicht	mittelschwer bis schwer
10.1.1, 10.2.1, 10.1.4	Terrasse: Sand/Kies, locker	leicht bis mittelschwer
10.1.2, 10.2.2	Terrasse: Sand/Kies, mitteldicht	mittelschwer bis schwer
10.1.3, 15.1.3, 15.3.3	Terrasse/Tertiär: Sand, dicht	schwer bis sehr schwer
16.1.2	Tertiär: Ton, weich	leicht
16.1.3	Tertiär: Ton, steif, steif/halbfest	mittelschwer bis schwer

Auffüllung:

In aufgefüllten Böden ist generell mit Steinen, Blöcken, o.ä. zu rechnen, die die Rammfähigkeit des Untergrundes wesentlich verschlechtern können.

In Abhängigkeit der Ergebnisse der Rammsondierungen werden die Auffüllungen bei lockerer Lagerung (Schicht 1.2.1, 1.3.1) als leicht bis mittelschwer, bei mitteldichter Lagerung (Schicht 1.2.2, 1.4.2) als mittelschwer und bei dichter Lagerung (Schicht 1.2.3) als mittelschwer bis schwer rammfähig eingeschätzt.

Terrassenablagerungen / Tertiär:

Die Sande und Kiese werden in Abhängigkeit von der Lagerungsdichte, bei lockerer Lagerung (Schicht 10.1.1, 10.2.1, 10.1.4) als leicht bis mittelschwer, bei mitteldichter Lagerung (Schicht 10.1.2, 10.2.2) als mittelschwer bis schwer und bei dichter Lagerung (Schicht 10.1.3, 15.1.3, 15.3.3) als schwer bis sehr schwer rammfähig eingeschätzt.

In Abhängigkeit der Konsistenz ist der weiche Ton (Schicht 16.1.2) als leicht und der steife bzw. steif/halbfeste Ton (Schicht 16.1.3) als mittelschwer bis schwer rammfähig zu bewerten.

Insgesamt ist der Baugrund unter den Auffüllungen vorwiegend als mittelschwer bis schwer rammfähig einzuschätzen. Insbesondere in den dicht gelagerten Sanden und Kiesen und den steifen bis steif/halbfesten Tonen sind Rammhilfen wie Spülen oder Vorbohren einzuplanen. Wir empfehlen, zur Auswahl der Rammtechnologie und Rammgeräte eine Fachfirma einzuschalten und Proberammungen vorzusehen. Die von uns vorgenommenen Einschätzungen zur Rammbarkeit schließen nicht die Erfahrungen von Baufirmen bei der Durchführung von Rammarbeiten mit ähnlichen Baugrundverhältnissen aus.

3 Gründungstechnische Schlussfolgerungen / Empfehlungen

3.1 Allgemeines

Im Rahmen des Ausbaus Knoten Frankfurt(Main)-Sportfeld sind zwei zusätzliche Fernverkehrsgleise geplant. Diesbezüglich muss die bestehende Eisenbahnüberführung Adolf-Miersch-Straße verbreitert werden. Gemäß der Planung /U 3/ ist eine Verbreiterung der EÜ bahnrechts vorgesehen. Der Neubau soll als Stahlbetonüberbau flach gegründet werden, mit zwei neuen Widerlagern und einem Mittelpfeiler. Die Gründungstiefe liegt frostfrei (≥ 1,2 m) bei ca. 94,95 m NN. Die lichte Weite ist mit 35 m und die lichte Höhe mit > 5,5 m geplant.

3.2 Flachgründung

Bei einer Flachgründung müssen die Fundamente von ihren Abmessungen so beschaffen sein, dass:

- a) die Grundbruchsicherheit nach DIN 4017 gewährleistet ist und
- b) keine bauwerksschädlichen Setzungen bzw. Setzungsunterschiede eintreten.

Aus den bahnrechten Baugrundprofilen (S/B 96, 97) ist ersichtlich, dass der Baugrund unter locker gelagerten sandigen Auffüllungen aus locker bis dicht gelagerten Sanden und Kiesen (Schichten 10 und 15) und weichen bis steif/halbfesten Tonen (Schicht 16) besteht. Die Unter-

kante der Auffüllungen wurde bei ca. 1,2 m bis 1,5 m unter GOK (Kote 95,80...95,76 m NN) festgestellt.

Als Gründungshorizont empfehlen wir die mindestens mitteldicht gelagerten Kiese und Sande der Schicht 10.2.2 und 10.1.2. Aufgrund der unterschiedlichen Tiefenlagen der Schichten (1,5 m bzw. 1,8 m unter GOK) empfehlen wir zur Reduzierung und Vergleichmäßigung der Setzungen im Bereich der Gründungsohle, den Einbau eines ≥ 0,5 m dicken Kiespolsters. Die Unterkante des Kiespolsters liegt bei ca. 1,8 m unter GOK in bzw. auf den mitteldicht gelagerten kiesigen und sandigen Terrassenablagerungen (SB 96 - Schicht 10.2.2; S/B 97 - Schicht 10.1.2). Die Aushubsohle sollte vor Einbau des Kiespolsters tiefenwirksam nachverdichtet werden (Grad der Verdichtung ist abhängig vom Grundwasserstand).

Das Kiespolster ist aus einem gut verdichtbaren Material der Bodengruppe GW, GI, SW oder SI herzustellen, welches bis zu einer Dichte $D_{Pr} \geq 1,0$ zu verdichten ist. Bei dem Kiespolster ist zu beachten, dass dieses gegenüber dem Gründungskörper einen allseitigen Überstand in Höhe Unterkante Kiespolster besitzen muss, welcher mindestens so groß wie die Auffüllhöhe ist. Für das Kiespolster wurden folgende charakteristische Berechnungskennwerte zum Ansatz gebracht:

$$\phi_{k}' = 35.0^{\circ}$$
; $C_{k}' = 0 \text{ kN/m}^{2}$; $\gamma_{k}/\gamma_{k}' = 19/11 \text{ kN/m}^{3}$; $E_{s,k} = 80 \text{ MN/m}^{2}$

Für die Berechnungen wurden folgende Annahmen getroffen:

Fundamentlänge:

a = 8 m

Fundamentbreite:

b = 4...6 m

Gründungstiefe:

 $t_{min} \approx 1.3 \text{ m (auf mind. 0.5 m Kiespolster)}$

Baugrundprofil:

S/B 96

Grundwasser:

 $t_{GW} \approx 3.0 \text{ m}$ unter GOK (Abschnitt 2.4)

Vorbelastung:

 $\sigma_V \approx 22 \text{ kN/m}^2$ (Aushubentlastung am Dammfuss)

angenommene zulässige Setzung: $s_{zul} \le 2$ cm

In Anlage 17.9.5, Blatt 01 wurden bei Annahme der Sicherheiten nach DIN 1054:2005-01, Lastfall 1 und lotrecht mittiger Belastung Grundbruchberechnungen und Setzungsabschätzungen durchgeführt Die Ergebnisse sind in Tabelle 11 dargestellt.

Tabelle 11: aufnehmbarer Sohldruck

	aufnehmbarer Sohldruck [kN/m²]			Setzung [cm]		
Fundamentbreite [m]	4,0	5,0	6,0	4,0	5,0	6,0
Grundbruchsicherheit	693	750	639	5,3	7,3	6,7

Anlage 17.9a Seite 20 von 28

nach DIN 1054:2005-01						
Setzung max. s = 2,0 cm	270	220	205	2,0	2,0	2,0

Die aus den Grundbruchberechnungen ermittelten aufnehmbaren Sohldrücke liegen in Abhängigkeit von den Fundamentbreiten zwischen σ_{zul} = 639...750 kN/m² mit Setzungsbeträgen von 5,3 cm bis 7,3 cm. Diese hohen Setzungen können vom Bauwerk vermutlich nicht schadensfrei aufgenommen werden. Bei einer angenommenen zulässigen Setzung von 2,0 cm ergibt sich, je nach Fundamentabmessungen, ein aufnehmbarer Sohldruck von σ_{zul} = 270...205 kN/m².

Folgerung:

Bei einer Gründung des Widerlagers bei 1,3 m unter GOK auf einem 0,5 m dicken Kiespolster können die aufnehmbaren Sohldrücke je nach Fundamentabmessungen in Abhängigkeit von den zulässigen Setzungen der Anlage 17.9.5, Blatt 01 entnommen werden. Auffüllungen in der Aushubsohle sind auszukoffern und das Kiespolster ist entsprechend zu verstärken. Die Fundamentsohle ist durch einen fachkundigen Geotechniker abnehmen zu lassen.

Die angegebenen aufnehmbaren Sohldrücke gelten zur Vorbemessung. Sie ersetzen nicht die notwendigen erdstatischen Nachweise (Grundbruchsicherheit, Gleiten, Kippen, Setzungen) unter Ansatz der tatsächlichen Fundamentabmessungen und Lasten.

3.3 Bohrpfahlgründung

Alternativ zur Abtragung der Lasten aus dem Brückenbauwerk, besteht auch die Möglichkeit die Widerlager der Brückenerweiterung auf Bohrpfählen zu gründen.

Für die Ermittlung der Tragfähigkeit von Bohrpfählen werden Spitzendruck- und Mantelreibungswerte benötigt. Die Einbindung der Bohrpfähle muss nach EA-Pfähle /U 11/ bei Lockergesteinsböden mindestens 2,5 m in die tragfähigen Schichten erfolgen. Tragfähige Schichten für den Ansatz eines Spitzendruckes sind im Sinne der EA-Pfähle rollige Böden mit einem mittleren Spitzenwiderstand der Drucksonde $q_c \ge 7,5$ MN/m² oder bindige Böden mit einer Scherfestigkeit des undränierten Boden $c_{u,k} \ge 0,1$ MN/m².

Als ausreichend tragfähig sind die mindestens mitteldicht gelagerten Sande und Kiese der Schichten 10.1.2, 10.1.3, 10.2.2, 15.1.3 und 15.3.3 und die mindestens steif/halbfesten Tone der Schicht 16.1.3 anzusehen.

In der nachfolgenden Tabelle 12 werden die zur Vorbemessung erforderlichen Bohrpfahlkennwerte in Anlehnung an die EA-Pfähle angegeben.

Tabelle 12: Pfahlspitzenwiderstand und Pfahlmantelreibung für Bohrpfähle nach /U 11/

Schicht Nr.	Bodenart	Pfahlspitzen- widerstand q _{b,k} [MN/m²]	Bruchwert der Pfahlmantelreibung q _{s1,k} [MN/m²]	Horizontale Bettungsziffer k _{s,k} [MN/m³] ⁴⁾
1.2.1	Auffüllung, rollig, nichtbindig, (Sand), locker	***	0,015 (0,01) ²⁾	
1.2.2	Auffüllung, rollig, nichtbindig, (Sand), mitteldicht		0,040	
1.2.3	Auffüllung, rollig, nichtbindig, (Sand), dicht	-24	0,080	***
1.3.1	Auffüllung, rollig, gemischt- körnig, (Sand), locker		0,015 (0,01) 2)	
1.4.2	Auffüllung, rollig, gemischt- körnig, (Kies), mitteldicht	••	0,040	255
10.1.1	Terrasse: Sand, rollig, nicht- bindig, locker		0,06	27
10.1.2	Terrasse: Sand, rollig, nicht- bindig, mitteldicht	1,05 / 1,35 / 3,00 1)	0,08	50
10.1.3	Terrasse: Sand, rollig, nicht- bindig, dicht	1,40 / 1,80 / 3,50 1)	0,10	83
10.1.4	Terrasse: Sand, rollig, ge- mischtkörnig, locker		0,030	16
10.2.1	Terrasse: Kies, locker		0,06	33
10.2.2	Terrasse: Kies, mitteldicht	1,05 / 1,35 / 3,00 1)	0,08	55
15.1.3	Tertiär: Sand, rollig, nicht- bindig, dicht	1,40 / 1,80 / 3,50 1)	0,12	100
Schicht Nr.	Bodenart	Pfahlspitzen- widerstand q _{b,k} [MN/m²]	Bruchwert der Pfahlmantelreibung q _{s1,k} [MN/m²]	Horizontale Bettungsziffer k _{s,k} [MN/m³]
15.3.3	Tertiär: Sand, rollig, ge- mischtkörnig, dicht	1,40 / 1,80 / 3,50 1)	0,10	72
16.1.2	Tertiär: Ton, weich	***	0,025 ³⁾	6
16.1.3	Tertiār: Ton, steif, steif/halbfest	0,35 / 0,45 / 0,8 1) 3)	0,040	11

¹⁾ in Abhängigkeit der bezogenen Pfahlkopfsetzung nach EA-Pfähle

Die angegebenen Werte gelten für Bohrpfähle (D = 0.30 - 3.0 m) mit einer Einbindetiefe in den tragfähigen Baugrund von mindestens 2.5 m. Die Mächtigkeit der tragfähigen Böden unterhalb der Pfahlfußfläche darf bei d = 0.9 m ein Maß von 2.7 m (3 x Pfahldurchmesser, mindestens

²⁾ bei Schlagzahlen N10 < 2

³⁾ gilt nicht für steifen Ton

 $^{^{4)}}$ k_{s,k} bezogen auf einen Pfahldurchmesser D = 0,9 m

Anlage 17.9a Seite 22 von 28

aber 1,5 m nicht unterschreiten. Darüber hinaus ist sicherzustellen, dass in diesem Bereich $q_c \ge 10 \text{ MN/m}^2$ bzw. $c_{u,k} \ge 0,10 \text{ MN/m}^2$ nachgewiesen ist. Wenn die genannten geometrischen Werte unterschritten werden, ist ein Nachweis gegen Durchstanzen zu führen. Außerdem ist dann nachzuweisen, dass der darunter liegende Boden das Setzungsverhalten nicht maßgeblich beeinträchtigt. Sofern dies nicht gewährleistet ist, empfehlen wir, sicherheitshalber keinen Spitzendruck anzusetzen.

Wir empfehlen, in Abhängigkeit der statischen Nachweise, Pfähle in den dichten Sanden der Schichten 15.1.3 und 15.3.3 abzusetzen.

Des Weiteren gelten die Angaben für Einzelpfähle und Pfahlgruppen unter Beachtung der Hinweise und Forderungen der EA-Pfähle /U 11/.

3.4 Pfahlwiderstände quer zur Pfahlachse

Querwiderstände dürfen nur für Pfähle mit einem Pfahlschaftdurchmesser $D \ge 0,30$ m bzw. einer Kantenlänge $a \ge 0,30$ m angesetzt werden. Der charakteristische Querwiderstand darf dabei durch charakteristische Werte des horizontalen Bettungsmoduls beschrieben werden. Der horizontale Bettungsmodul $k_{s,k}$ lässt sich grob abschätzen nach der Gleichung:

$$k_{s,k} = E_{S,k} / D_s$$
 mit $E_{s,k} \dots$ charakteristischer Wert des Steifemoduls $D_s \dots$ Pfahldurchmesser

Die Anwendung dieser Formel gilt für Pfahldurchmesser $D \le 1,0$ m und einem Höchstwert der Horizontalverschiebung von y = 2 cm bzw. $y = 0,03 \cdot D$, wobei der kleinere Wert maßgebend ist. Bei einem Pfahldurchmesser von 0,9 m ergibt sich eine maximale Horizontalverschiebung von 0,03*0,9 m = 2,7 cm > 2 cm; daraus folgt: y = 2 cm ist maßgebend! Bei größeren Verformungen sind die Bettungsmoduli abzumindern. Bei der Ermittlung des horizontalen Bettungsmoduls ist ebenfalls eine Gruppenwirkung der Pfähle zu berücksichtigen. Bei einem Pfahlabstand, der dem zweifachen Pfahldurchmesser entspricht, ist der Bettungsmodul mit dem Faktor 0,75 abzumindern.

Die in Tabelle 12 angegebenen Bettungsziffern gelten für Pfahldurchmesser 0,9 m und maximale Horizontalverformungen von 2,0 cm.

3.5 Baugrubensicherung und Wasserhaltung

Für die Herstellung von Widerlagerfundamenten bzw. Pfahlkopfbalken sind Baugruben erforderlich. Baugruben bis 1,25 m Tiefe können nach DIN 4124 senkrecht ausgehoben werden. Tiefere Baugruben müssen geböscht oder verbaut werden. Ausgehend von den Erkundungsergebnissen können nach DIN 4124 für Böschungen bis 5,0 m Höhe ohne besonderen Nachweis folgende Böschungswinkel im Lockergesteinsbereich über Grundwasser entsprechend DIN 4124 in Ansatz gebracht werden:

Schicht 1, 10, 15: $\beta \le 45^{\circ}$

Schicht 16: $\beta \le 60^{\circ}$ (mindestens steife Konsistenz, ansonsten 45°)

Unbelastete Böschungen können unter einem Neigungswinkel von 45° bzw. 60° bis max. 5 m Höhe abgeböscht werden. Für belastete und / oder höhere Böschungen ist die Standsicherheit nachzuweisen. Die Hinweise der DIN 4124 sind zu beachten. Die Böschungswinkel sind nach den tatsächlich anstehenden Erdstoffen im Böschungsbereich anzulegen. Bei der Herstellung von Baugruben sind weitergehende Forderungen, Empfehlungen und Hinweise der DIN 4124 sowie des Arbeitskreises "Baugruben" (EAB) der Deutschen Gesellschaft für Erd- und Grundbau zu beachten. Sofern Verbauarbeiten vorgesehen sind, können die Rechenwerte zur Verbauberechnung Abschnitt 2.6, Tabelle 6 entnommen werden. Angaben zur Rammfähigkeit des Untergrundes enthält Abschnitt 2.9.

Die horizontalen Bettungsziffern für durchgehende Verbauwände lassen sich in Anlehnung an die EAB /U 12/, Kapitel 4.6 (EB 102) näherungsweise ableiten zu:

 $k_{sh,k} = E_{Sh,k}/t_B$ (für Ortbetonwände und Spundwände)

 $k_{sh,k} = E_{Sh,k}/b$ (für Bohlträger)

mit: E_{Sh.k} - horizontale Steifemodul

t_B - von der Bettung erfasste Einbindetiefe

 Flanschbreite bei gerammten Trägern, bei Trägern, die in vorgebohrte Löcher eingestellt werden, tritt der Bohrlochdurchmesser D an die Stelle von b

Der horizontale Steifemodul $E_{S,h}$ kann aus dem vertikalen Modul E_S (siehe Tabelle 6a-c) mit dem Faktor f=0.5 umgerechnet werden.

Anlage 17.9a Seite 24 von 28

Grundwasser wurde mit den Kernbohrungen S/B 96 und S/B 97 in einer Tiefe von 4,1 m bzw. 4,2 m unter GOK angetroffen. Der höchste Grundwasserstand (Bemessungswasserstand) wurde in Abschnitt 2.4 mit 3,0 m unter GOK (~ 94,16 m NN) angegeben.

Wir gehen davon aus, dass im Rahmen einer Flachgründung kein negativer Einfluss des Grundwassers eintritt. Eine Wasserhaltung ist in diesem Fall nicht erforderlich.

Bei einer Pfahlgründung sind die Pfähle mit vorauseilender Verrohrung herzustellen. Unter dem Grundwasserspiegel ist mit Wasserüberdruck bzw. Überdruck einer Tonsuspension zu bohren. Auflockerungen infolge des Herstellungsprozesses der Pfähle, insbesondere in den Sandschichten, sind grundsätzlich zu vermeiden.

3.6 Entwässerung / Versickerungsfähigkeit

Entwässerungsanlagen sind nach Ril 836 dort vorzusehen, wo das Grund- oder Schichtwasser höher als bis 1,50 m unter SO ansteigen kann.

Nach DWA-A 138 "Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser" /U 13/ sind Böden versickerungsfähig, deren k_F-Werte im Bereich von 10⁻³ bis 10⁻⁶ m/s liegen. Ferner sollte die Mächtigkeit des Sickerraumes (Gesteinskörper, der zum Betrachtungszeitpunkt kein Grundwasser enthält), bezogen auf den mittleren höchsten Grundwasserstand, grundsätzlich mindestens 1,0 m betragen, um eine ausreichende Sickerstrecke für eingeleitete Niederschlagsabflüsse zu gewährleisten.

Die Versickerungsfähigkeit der Schichten ist in Abhängigkeit der aus Kornverteilungskurven ermittelten k_f -Werte (siehe Tabelle 3) und unter Berücksichtigung des Korrekturfaktors von 0,2 nach DWA-A 138 wie folgt einzuschätzen:

Tabelle 13: Versickerungsfähigkeit von Böden nach DWA-A 138

Boden	Schicht	k _f -Werte [m/s]	k _{f,korr} -Werte [m/s]	Versickerungsfähigkeit	
Auffüllung, (Sand/Kies), rollig	1.2.1, 1.2.2, 1.2.3, 1.4.2	4,1*10 ⁻⁴ [SE]	8,2*10 ⁻⁵ [SE]	versickerungsfähig	
		10 ⁻³ 10 ⁻⁵ [SE, SU, GI]	10 ⁻³ 10 ⁻⁵ [SE, SU, GI]	versickerungsranig	
Auffüllung, (Sand), gemischtkörnig	1.3.1	10 ⁻⁵ 10 ⁻⁷ [SU*]	10 ⁻⁵ 10 ⁻⁷ [SU*]	versickerungsfähig bis nicht versickerungsfähig	
Terrasse: Sand/Kies, rollig	10.1.1, 10,1.2, 10.1.3, 10.2.1, 10.2.2	10 ⁻² 10 ⁻⁴ (SE, SI, GI)	10 ⁻² 10 ⁻⁴ (SE, SI, GI)	versickerungsfāhig	
		7,63*10 ⁻⁴ (GI)	1,5*10 ⁻⁴ (GI)		
Terrasse: Sand, gemischtkörnig	10.1.4	10 ⁻⁵ 10 ⁻⁷	10 ⁻⁵ 10 ⁻⁷	versickerungsfähig bis nicht versickerungsfähig	
Tertiār: Sand, rollig	15.1.3	10 ⁻³ 10 ⁻⁵ (SE, SU)	10 ⁻³ 10 ⁻³ (SE, SU)	versickerungsfähig	
Tertiär: Sand, gemischtkörnig	15.3.3	5,8*10 ⁻⁷	1,16*10 ⁻⁷	nicht versickerungsfähig	
Tertiär: Ton	16.1.2, 16.1.3	10 ⁻⁸ 10 ⁻¹⁰	< 10 ⁻⁶	nicht versickerungsfähig	

Mit den ausgeführten Aufschlüssen wurden im Untergrund aufgefüllte und anstehende Böden mit unterschiedlich hohem Feinkornanteil erkundet. Die Versickerungsfähigkeit der einzelnen Schichten kann der Tabelle 13 entnommen werden.

Fazit:

Gemäß Einschätzung nach DWA-A 138 ist eine Versickerung von Niederschlagswasser am Untersuchungsstandort überwiegend gegeben. Die unzureichend versickerungsfähigen schluffigen Sande stehen im Bereich der Brücke nur in untergeordnet an. Die wasserundurchlässigen Tone spielen aufgrund der Tiefenlage für die Versickerung keine Rolle.

Im Rahmen der weiteren Planung ist mit den zuständigen Behörden abzustimmen, ob eine Versickerung am Standort der Brücke möglich ist (Innenstadtlage) oder ob anfallende Oberflächenwässer in das Entwässerungsnetz eingeleitet werden müssen bzw. dürfen.

3.7 Einfluss auf angrenzende Bebauung

Um Gleissenkungen und Nachsetzungen der vorhandenen EÜ zu verhindern bzw. zu minimieren sowie die Standsicherheit der Dammböschungen nicht zu gefährden, sollten insbesondere bei Verbauarbeiten möglichst erschütterungsarme Verfahren angewendet werden. Darüber hinaus ist eine kontinuierliche Beobachtung und messtechnische Überwachung der in Betrieb befindlichen Gleisanlagen und Masten vorzunehmen. Ggf. ist eine Langsamfahrstelle als bahnseitige Schutzmaßnahme einzurichten. Im Vorfeld der Baumaßnahme sollte eine Beweissicherung an der Straße bzw. dem Leitungsbestand durchgeführt werden.

3.8 Ausbildung der Hinterfüllung

Mit der Erweiterung der Eisenbahnüberführung sind die Hinterfüllungen gemäß den Forderungen der Ril 836 auszubilden. Nach Ril 836 sind Bauwerkshinterfüllungen so auszubilden, dass Setzungen am Übergang zwischen Kunstbauwerk und Erdbauwerk infolge

- > Konsolidierung des Untergrundes,
- > Eigenverformung der Hinterfüllung und
- > Verkehrsbelastung minimiert werden.

Danach sollten die Hinterfüllmaterialien gemäß Ril 836, Modul 836.0504, Bild 2 aus wasserdurchlässigen, grobkörnigen, weit- oder intermittierend gestuften Kiessanden (GW, GI, SW, SI nach DIN 18196) mit einem Verdichtungsgrad $D_{pr} \geq 1,0$ bestehen. Um dies zu erreichen, sollen sie im erdfeuchten Zustand in Lagen von $d \leq 0,30$ m eingebaut und verdichtet werden. Die Verdichtung ist im Zuge der Bauausführung kontinuierlich nachzuweisen. Das einzubauende Material ist auf seine Eignung hin im Vorfeld der Baumaßnahme zu prüfen. Eine schematische Darstellung für die Ausführung der Hinterfüllung bei bestehenden Strecken enthält Bild 1.

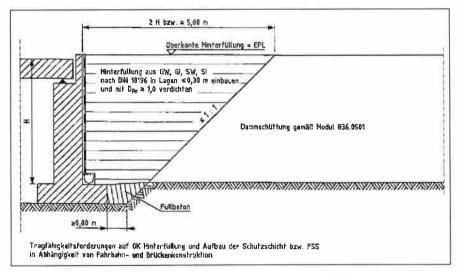


Bild 1: Ausbildung der Hinterfüllung gemäß Ril 836

Die Breite des Hinterfüllbereiches muss auf OK der Hinterfüllung mindestens 5,0 m bzw. 2 x H (Auffüllhöhe) betragen. Der größere Wert ist maßgebend. Zur Entwässerung empfehlen wir eine Sickerschicht mit Entwässerungsrinne anzuordnen und anfallendes Wasser aus dieser abzuleiten.

3.9 Wiederverwendbarkeit der Aushubmassen

Die bei der Erweiterung der Eisenbahnüberführung anfallenden Erdmassen stellen sandige und kiesige Auffüllungen und ggf. die anstehenden Sande dar, darüber hinaus Oberboden im Böschungsbereich. Diese Böden sind gemäß Ril 836, Modul 836.0504, Bild 2 als Hinterfüllmaterial der Widerlager nicht geeignet. Bis auf den Oberboden können sie jedoch in Bereichen ohne besondere Anforderungen an Durchlässigkeit, Verdichtungsgrad, Frostempfindlichkeit usw. als Auffüllmaterial o.ä. eingesetzt werden.

Fremdbestandteile wie Wurzeln, Bauschutt, Schlacke o.ä. sowie der Oberboden sind vor einer Wiederverwendung der Böden auszusondern.

Für den Wiedereinbau ist gemäß LAGA 20 bzw. Merkblatt "Entsorgung von Bauabfällen", Hessen eine Haufwerksuntersuchung erforderlich. Die umweltanalytischen Laborergebnisse werden in einem gesonderten Bericht dargestellt und erläutert.

4 Zusammenfassung / Schlussbemerkungen

Im vorliegenden geotechnischen Bericht sind die Baugrundverhältnisse und deren Bewertung für die Erweiterung der Eisenbahnüberführung über die Adolf-Miersch-Straße im Rahmen des Projektes Ausbau des Knotens Frankfurt(M)-Sportfeld, 2. Ausbaustufe dargestellt. Die Untersuchungen beziehen sich auf die Ermittlung der Eigenschaften der aufgefüllten und anstehenden Böden zur Beurteilung des Baugrundes hinsichtlich der Gründung des Bauwerkes.

Des Weiteren wurden abfallanalytische Untersuchungen des Bodens vorgenommen, deren Auswertung in einem separaten Bericht erfolgt.

Der Baugrund besteht ab Geländeoberkante bzw. im Dammbereich aus rolligen Auffüllungen in Form von eng- und intermittierend gestuften Sanden und Kiesen sowie schwach schluffigen bis schluffigen Sanden. Im Dammbereich weisen die Auffüllungen Mächtigkeiten von 5,75 m und 5,95 m auf und im Straßenbereich vor den Widerlagern 1,15 m bis 1,45 m. Darunter folgen locker bis dicht gelagerte Terrassensande und -kiese, gefolgt von dicht gelagerten tertiären Sanden und weichen bzw. steifen und steif/halbfesten leicht- bis mittelplastischen Tonen.

Das Grundwasser wurde mit den Kernbohrungen S/B 96 und S/B 97 bei 4,1 m und 4,2 m unter Gelände angeschnitten. Wir empfehlen, den Bemessungswasserstand zuzüglich eines Sicherheitszuschlages von 1 m bei 3,0 m unter Gelände (ca. 94,16 m NN) anzunehmen.

Ausgehend von den Erkundungsergebnissen ist eine Flach- als auch Tiefgründung der neuen Brücke möglich.

Die punktförmig durchgeführten Bodenuntersuchungen geben einen guten Überblick über die vorhandenen Untergrundverhältnisse, sie schließen jedoch Abweichungen in Teilbereichen nicht aus. Wir empfehlen uns einzuschalten, wenn sich Abweichungen von den Untersuchungsergebnissen ergeben bzw. planungstechnische Änderungen durchgeführt werden, die Einfluss auf die Gründung des Bauwerkes haben können.

aufgestellt:

Dipl.-Ing. Ch. Sielisch