Anlage 17.6.4.2

Beton- und Stahlaggressivität

Prüfung und Beurteilung von betonangreifenden Wässern nach DIN 4030 Teil 2

Bauvorhaben:

Umbau Knoten Frankfurt/Main-Sportfeld

Objekt:

Kreuzungsbauwerk

1. Allgemeine Angaben

Prüfungs-Nr. Wessling:

10-120344-01

Reg.-Nr.:

Auftrags-Nr.: PF 3 0368 01

Entnahmestelle: S/B 54

Art des Wassers : Grundwasser

Entnahmetiefe:

Entnahmedatum: -

Probenehmer: Probeneingang: 11.11.2010

UGG

Bemerkungen:

Geländeverhältnisse am Entnahmeort:

2. Wasseranalyse			3. Grenz	werte zu	r Beur	teilung nach	DIN 4030	Teil 1 ^{*)}	
	Prüferge	ebnis	schwach a	schwach angreifend		k angreifend	sehr star	sehr stark angreifend	
Aussehen	braun			-		*)#.	
Geruch (unveränderte Probe)	ohr Besond			-) = :	(#)		
Geruch (angesäuerte Probe)	ohne Besonde			=) = :		(=)	
pH - Wert	8,0		6,5 b	is 5,5	< 5	< 5,5 bis 4,5		: 4,5	
KMnO₄ -Verbrauch	212,0	mg/l					₹ 9 5		
Härte	304	mg/l		2		-		· ·	
Hydrocarbonathärte	110	mg/l							
Nichtcarbonathärte	k.A.	(A				(m)			
Magnesium (Mg ²⁺)	40	mg/l	300 bis 1	1000 mg/l	>1000	b. 3000 mg/l	>	3000 mg/l	
Ammonium (NH ₄ ⁺)	0,3	mg/l	15 bis	30 mg/l	> 30	b. 60 mg/l	>	60 mg/l	
Sulfat (SO ₄ 2 ⁻)	110	mg/l	200 bis	200 bis 600 mg/l > 600 b. 3000 mg/l		>	3000 mg/l		
Chlorid (Cl ⁻)	52	mg/l	₩.		- ·		*		
CO ₂ (kalklösend)	4,0	mg/l	15 bis 40 mg/l		> 40	b. 100 mg/l	>	100 mg/l	
Sulfid (S ²⁻)	< 0,10	mg/l				150			
			7			nn - nich	t nachweisk	ar	

^{*)} Für die Beurteilung ist der höchste Angriffsgrad maßgebend, auch wenn er nur von einem der Werte erreicht wird. Liegen zwei oder mehr Werte im oberen Viertel eines Bereiches (bei pH im unteren Viertel), so erhöht sich der Angriffsgrad um eine Stufe (ausgenommen Meerwasser und Niederschlagswasser).

4. Beurteilung

Das Wasser gilt als nicht betonangreifend.

ausgeführt durch: Wessling

geprüft:

Meineck

Betonaggressivität von Wässern

Angaben zur Beurteilung von Wässern auf die Korrosionswahrscheinlichkeit metallischer Werkstoffe nach DIN 50 929

Bauvorhaben: Umbau Knoten Frankfurt/Main-Sportfeld

Objekt: Kreuzungsbauwerk

Entnahmestelle: S/B 54 Probe-Nr.: Entnahmetiefe: 5,30m

Prüfungs-Nr.: Wessling 10-120344-01

Reg.-Nr. : ---

Auftrags-Nr. : PF 3 0368 01

Bemerkungen: Eingang am 11.11.2010

N.								
Nr.	Merkmal und Dimension	Einheit / Prüf -	Bewertungsziffer für					
		ergebnisse	unlegierte Eisen	verzinkten Stahl				
1	Wasserart		N ₁	M ₁				
	fließende Gewässer	х	0	-2				
	stehende Gewässer		-1	+1				
ı	Küste von Binnenseen		-3	-3				
Ļ	anaerob.Moor, Meeresküste		-5	-5				
2	Lage des Objektes		N ₂	M ₂				
	Unterwasserbereich	х	0	0				
	Wasser/Luft-Bereich		1	-6				
	Spritzwasserbereich		0,3	-2				
3	$c (Cl^-) + 2 c (SO_4^{2-})$	mol/m³	N ₃	<i>M</i> ₃				
	< 1		0	0				
	> 1 bis 5	3,8	-2	0				
	> 5 bis 25		-4	-1				
	> 25 bis 100		-6	-2				
	> 100 bis 300		-7	-3				
_	> 300	1/ 0	-8	-4				
4	Säurekapazität bis pH 4,3 (Alkalität _{K S4,3})	mol/m³	N ₄	M ₄				
	< 1		1	-1				
	1 bis 2		2	+1				
	> 2 bis 4	4.0	3	+1				
	> 4 bis 6	4,0	4 5	0 -1				
	> 6	1/ 0		-				
5	c (Ca ²⁺)	mol/m ³	N ₅	M ₅				
	< 0,5		-1	0				
	0,5 bis 2		0	+2				
	> 2 bis 8	3,7	+1	+3				
Ļ	> 8		+2	+4				
6	pH - Wert		N ₆	M ₆				
	< 5,5		-3	-6				
	5,5 bis 6,5		-2	-4				
	> 6,5 bis 7,0		-1	-1				
	> 7,0 bis 7,5		0	+1				
-	> 7,5	8,0 V	+1	+1				
7	Objekt/Wasser-Potential U _H (zur Feststellung der Fremdkathoden)	V	N ₇					
-	(zur Feststellung der Fremakatnoden) > -0,2 bis -0,1	x	-2					
	> -0,2 bis -0,1 > -0,1 bis 0,0	^	-2 -5					
	> -0,1 bis 0,0 > -0,0		-5 -8					
Proh	ennahme und analytische Bestimmungen nach DIN 50 930 Teil 1 .		-0					
	The state of the s							

Bearbeiter: Wessling geprüft: Meineck

Stahlkorrosivität einer Wasserprobe

Angaben zur Beurteilung von Wässern auf die Korrosionswahrscheinlichkeit metallischer Werkstoffe nach DIN 50 929

Bauvorhaben: Umbau Knoten Frankfurt/Main-Sportfeld

Objekt: Kreuzungsbauwerk

Entnahmestelle: S/B 54 Probe-Nr.: Entnahmetiefe: 5,30m

Prüfungs-Nr.: Wessling 10-120344-01

Reg.-Nr. : ---

Auftrags-Nr. : PF 3 0368 01

Entsprechend Tab. 6 aus DIN 50929/ T.3 ergeben sich nachfolgende Bewertungsziffern:

4	Wasserart:
١.	wasseran.

- 2. Lage des Objektes:
- 3. $c(Cl^{-}) + 2c(SO_4^{2-})$
- 4. Säurekapazität
- 5. Calcium
- 6. pH Wert
- 7. Objekt/wasser-Potential UH

Bewertungsziffer für						
unlegie	rte Eisen	verzinkt	en Stahl			
N ₁	0*	<i>M</i> ₁	-2*			
N ₂	0*	M ₂	0*			
N ₃	-2	Мз	0			
N ₄	4	M ₄	0			
N ₅	1	M ₅	3			
N ₆	1	M ₆	1			
IN ₇	-2					

^{*} basiert auf örtlicher Einschätzung

Abschätzung der Korrosionswahrscheinlichkeit (DIN 50929/T.3,Tab. 7):

1. Unlegierte und niedriglegierte Eisenwerkstoffe

1.1 Freie Korrosion im Unterwasserbereich

$$W_0 = N_1 + N_3 + N_4 + N_5 + N_6 + N_3/N_4$$
 $W_0 = 3.5 \longrightarrow$

1.2 Korrosion an der Wasser/Luft-Grenze

$$W_1 = W_0 - N_1 + N_2 \times N_3$$
 $W_1 = 3.5 \rightarrow$

Mulden- u.	Flächen-
Lochkorrosion	korrosion
sehr gering	sehr gering
sehr gering	sehr gering

Abschätzung der mittleren Korrosionsgeschwindigkeit (DIN 50929/T.3,Tab. 8):

1.3 Freie Korrosion im Unterwasserbereich

 $W_0 = 3.5$

1.4 Korrosion an der Wasser/Luft-Grenze

 $W_1 = 3.5$

Abtragungsrate w (100 a) in mm/ a	max. Eindring- tiefe w _{Lmax} (30 a) in mm/a
0,01	0,05
0,01	0,05

Maßnahmen für den Korrosionsschutz (DIN 50 929, Teil 3, Punkt 8.1):

Allgemein ist Korrosionsschutz durch Beschichtungen zu bevorzugen. Dabei sind folgende Normen

zu berücksichtigen Stahlbau: DIN 55 928, Teil 5

Rohre: DIN 30 670, DIN 30671, DIN 30 672, DIN 30 673, DIN 30 674, Teil 1 und 2.

Frankfurt, 31.01.2011

geprüft: Falkner

Angaben zur Beurteilung von Wässern auf die Korrosionswahrscheinlichkeit metallischer Werkstoffe nach DIN 50 929

Probe-Nr.:

Bauvorhaben: Umbau Knoten Frankfurt/Main-Sportfeld

Objekt:

Kreuzungsbauwerk

Entnahmestelle:

S/B 54

Entnahmetiefe:

5.30m

Prüfungs-Nr.: Wessling 10-120344-01

Reg.-Nr. :

Auftrags-Nr. :

PF 3 0368 01

Entsprechend Tab. 6 aus DIN 50929/ T.3 ergeben sich nachfolgende Bewertungsziffern:

1.	Wasserart:
1.	vvasserari.

- 2. Lage des Objektes:
- 3. $c(Cl^{-}) + 2c(SO_4^{2-})$
- 4. Säurekapazität
- 5. Calcium
- 6. pH Wert
- 7. Ubjekt/wasser-Potential UH

Bewertungsziffer für					
unlegie	unlegierte Eisen		en Stahl		
N ₁	0*	<i>M</i> ₁	-2*		
N ₂	0*	<i>M</i> ₂	0*		
N ₃	-2	Мз	0		
N ₄	4	M_4	0		
N ₅	1	M ₅	3		
N ₆	1	M ₆	1		
IN ₇	-2				

^{*} basiert auf örtlicher Einschätzung

Abschätzung der Korrosionswahrscheinlichkeit (DIN 50929/T.3,Tab. 5):

2. Feuerverzinkte Stähle

2.1 Ausbildung der Deckschicht im Unterwasserbereich

$$W_{\rm D} = M_1 + M_3 + M_4 + M_5 + M_6$$

$$W_{\rm D} = 2.0 \longrightarrow$$

2.2 Ausbildung der Deckschicht an der Wasser/Luft-Grenze

$$W_L = W_D + M_2$$

$$W_L = 2,0 \longrightarrow$$

Güte der	
Deckschichten	
sehr gut	
sehr gut	

Abschätzung der mittleren Korrosionsgeschwindigkeit:

- entfällt -

Maßnahmen für den Korrosionsschutz (DIN 50 929, Teil 3, Punkt 8.3):

Im wesentlichen gelten die Angaben für unverzinkte Stähle. Feuerverzinkte Stähle sollten nur verwendet werden, wenn die Schutzwirkung mindestens befriedigend (s. vorstehende Tabelle) ist.

Frankfurt, 31.01.2011

geprüft: Falkner

Stahlkorrosivität einer Wasserprobe

WESSLING Laboratorien GmbH Labor Rhein-Main Rudolf-Diesel-Straße 23 · 64331 Weiterstadt Tel. +49 [0] 6151 3636-0 · Fax +49 [0] 6151 3636-20 labor.rhein-main@wessling.de

WESSLING Laboratorien GmbH, Rudolf-Diazel-Straffe 23, 64231 Westerstadt

DB International GmbH - Baugrund Bereich West / Südwest Büro Frankfurt am Main Herr Sielisch Oscar-Sommer-Straße 15 60596 Frankfurt Ansprechpartner:

Durchwahl: E-Mail: Dr. Dennis Braks (96151) 3 636-25 Dennis,Braks @wessling.de

Auftr.-Nr. PF 30368 01

BV: Umbau Knoten Frankfurt/Main-Sportfeld

Teilobjekt: EÜ

Prüfbericht Nr. UDA11-00452-1	Auftrag No	UDA-04037-10		Datum	26.01.201
Probe Nr.		10-120344-01	10-120344-02		
Eingangsdatum		11.11.2010	11.11.2010		
Bezeichnung		Kreuz.bauwerk BK 54	EU Ladestraße BK 137		
Probenart		Wasser, allgemein	Wasser, allgemein		
Probenahme durch		Auftraggeber	Auftraggeber		
Untersuchungsbeginn		11.11.2010	11.11.2010		
Untersuchungsende		18.11.2010	18.11.2010		
Physikatische Untersuchung		•			
Probe Nr.		10-120344-01	10-120344-02		
Bezeichnung		Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137		
Farbe	W/E	braun	farblos		
Geruch	W/E	ohne	nach Mineraiöi		
pH-Wert	W/E	8	8		
Kationen, Anionen und Nichtmetalle		1/1			
Drobe Mr					

Probe Nr.			10-120344-01	10-120344-02
Bezeichnung			Kreuz.bauwerk BK 54	EU Ladestraße BK 137
Ammonium (NH4)	mg/l	W/E	0,31	0,19
Härtehydrogencarbonat	*dH	W/E	11	11
Gesamthärte	*dH	W/E	30,4	87,8
Kohlensäure (CO2), aggressive	mg/l	W/E	4	<2
Permanganat-Index	mg/l	W/E	212	<1
Suifid (S), gelöst	mg/l	W/E	<0,1	<0.1
Chiorid (Ci)	mg/l	W/E	52	57
Sulfat (SO4)	mg/l	W/E	110	57

WESSLING Laboratorien GmbH Labor Rhein-Main Rudolf-Diesel-Straße 23 · 64331 Weiterstadt Tel. +49 (0) 6151 3636-0 · Fax +49 (0) 6151 3636-20 labor.rhein-main@wessling.de

Prüfbericht Nr.	UDA11-00452-1	Au	ftrag Nr	. UDA-04037-10	0	Datum	26.01.2011
Elemente							
Probe Nr.				10-120344-01	10-120344-02		
Bezeichnung				Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137		
Calcium (Ca)		mg/l	W/E	150	570		
Magneslum (M	g)	mg/l	W/E	40	31		

WESSLING Laboratorien GmbH Labor Rhein-Main Rudolf-Diesel-Straße 23 · 64331 Weiterstadt Tel. +49 (0) 6151 3636-0 · Fax +49 (0) 6151 3636-20 labor.rhein-main@wessling.de

Prüfbericht Nr. UDA11-00452-1	Auftrag Nr.	UDA-04037-10		Datum	26.01.201
Probe Nr.	1	0-120344-01	10-120344-02		
Eingangsdatum	11.1	1.2010	11.11.2010		
Bezeichnung	Kre BK	uz.bauwerk 54	EÜ Ladestraße BK 137		
Probenart	Was	ser, aligemein	Wasser, allgemein		
Probenahme durch	, A	uftraggeber	Auftraggeber		
Untersuchungsbeginn		11.11.2010	11.11.2010		
Untersuchungsende		18.11.2010	18.11.2010		

Probe Nr.		10-120344-01	10-120344-02	
Bezeichnung			Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137
Chlorid (CI)	mol/m³	W/E	1,47	1,61
Sulfat (SO4)	mol/m³	W/E	1,15	0,593
Calcium (Ca)	mol/m³	W/E	3,74	14,2

Physikalische Untersuchung

Dezeichildig		10-120344-01	10-120344-02	
		Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137	
pH-Wert		W/E	8	8
Redoxpotential vs. NHE	mV	W/E	178	161

Kationen, Anionen und Nichtmetalle

Probe Nr.			10-120344-01	10-120344-02
Bezeichnung			Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137
Chlorid (CI)	mg/l	W/E	52	57
Sulfat (SO4)	mg/i	W/E	110	57

Sonstiges

Probe Nr.		10-120344-01	10-120344-02	
Bezeichnung		Kreuz.bauwerk BK 54	EÜ Ladestraße BK 137	
Säurekapazität, pH 4,3	Nomm	W/E	4,05	3,85

Elemente

Dozeichildig		10-120344-01	10-120344-02 EÜ Ladestraße BK 137	
		Kreuz,bauwerk BK 54		
mg/l	W/E	150	570	
	mg/l		Kreuz.bauwerk BK 54	

Seite 3 von 4

WESSLING Laboratorien GmbH Labor Rhein-Main Rudolf-Diesel-Straße 23 · 64331 Weiterstadt Tel. +49 (0) 6151 3636-0 · Fax +49 (0) 6151 3636-20 labor.rhein-main@wessling.de

Prüfbericht Nr.	UDA11-00452-1	Auftrag Nr.	UDA-04037-10	Datum	26.01.2011
					2010112011

Abkürzungen und Methoden

Färbung von Wasser/Eluat

Geruch/Geschmack von Wasser/Eluat

pH-Wert in Wasser/Eluat

Permanganat-Index in Wasser/Eluat

Kohlensäure aggressive in Wasser/Elust

Ammonium

Gelöste Anionen (D19/D20) in Wasser/Eluet

Gesamthärte in Wasser/Eluat

Härtehydrogencarbonat in Wasser/Eluat

Gelöste Anlonen (D19/D20) in Wasser/Eluat

Sulfid gelöst in Wasser/Eluat

Metalle/Elemente in Wasser/Eluat (ICP-OES/ICP-MS)

Saure- und Basekapazität in Wasser/Eluat

Chlorid (CI)

Sulfat (SO4)

Calcium (Ca) aus HF-HNQ3-HCI-Druckaufschluß

Redoxpotenzial

EN ISO 7887 (C1)A

DEV B1/2

DIN 38404 C5

EN ISO 8467

.....

DIN 38404 C10

DIN 38408 E5-1

EN ISO 10304 D19/D20A

DIN 38409 H6

DIN 38405 D8

EN ISO 10304-1A

DIN 36405 D26A

ISO 11885 / ISO 17294-2

DIN 38409 H7

EN ISO 10304-1A

EN ISO 10304 D19/D20A

EN ISO 11885

DIN 38404 C6

W/E

Wasser/Eluat

Dr. Dennis Braks Geschäftsbereichsleiter

Selte 4 von 4

